BIOLOGY # STUDENT TEXTBOOK # GKADE I # **BIOLOGY** STUDENT TEXTBOOK GRADE 11 2023 **BIOLOGY** STUDENT TEXTBOOK **GRADE** 11 # Take Good Care of This Textbook Biology Student Textbook Grade 11 This Textbook is the property of your school. Take good care not to damage or lose it. Here are 10 ideas to help take care of the book: - 1. Cover the book with protective materials, such as plastic, old newspapers or magazines. - 2. Always keep the textbook in a clear dry place. - 3. Be sure your hands are clean when you use the textbook. - 4. Do not write on the cover or inside pages. - 5. Use a piece of paper or cardboard as a textbook mark. - 6. Never tear or cut out any pictures or pages. - 7. Repair any torn pages with paste or tape. - 8. Pack the textbook carefully when you place it in your school bag. - 9. Handle the textbook with care when you passing it to another person. - 10. When using a new textbook for the first time, lay it on its back. Open only a few pages at a time. Press lightly along the bound edge as you turn the pages. This will keep the cover in good condition. BIOLOGY GRADE 11 TABLE OF CONTENTS # BIOLOGY STUDENT TEXTBOOK GRADE 11 Writers: Habtamu Wodaj (PhD) Sutuma Edessa (PhD) **Pedagogical Editor:** Meskerem Cheru (MSc) **Content Editor:** Destaw Damtie (PhD) **Language Editor:** Yenus Nurie (PhD) THE TOUCH OF EDUCAL **Illustrator:** Nega Tassie (PhD) **Designer:** Ali Seid (PhD) **Evaluators:** Berhanu Tesfaye (MA & MEd) Gebrehana Zeleke (MSc) Samuel Desalegn (MSc) Bekele Geleta (MSc) BIOLOGY GRADE 11 TABLE OF CONTENTS First Published **August** 202**3** by the Federal Democratic Republic of Ethiopia, Ministry of Education. © 202**3** by the Federal Democratic Republic of Ethiopia, Ministry of Education. All rights reserved. The moral rights of the author have been asserted. No part of this textbook may be reproduced, copied in a retrieval system, or transmitted in any form or by any means, including electronic, mechanical, magnetic, photocopying, recording, or otherwise, without the prior written permission of the Ministry of Education or licensing in accordance with the Federal Democratic Republic of Ethiopia as expressed in the *Federal Negarit Gazeta*, Proclamation No. 410/2004, "Copyright and Neighboring Rights Protection." The Ministry of Education wishes to thank the many individuals, groups and other bodies involved – directly or indirectly – in publishing this Textbook. Special thanks are due to Hawassa University for their huge contribution in the development of this textbook in collaboration with Addis Ababa University, Bahir Dar University and Jimma University. Copyrighted materials used by permission of their owners. If you are the owner of copyrighted material not cited or improperly cited, please contact the Ministry of Education, Head Office, Arat Kilo, (P.O.Box 1367), Addis Ababa Ethiopia. Photo Credit: ----- Printed by: **GRAVITY GROUP IND LLC** 13th Industrial Area, Sharjah, UNITED ARAB EMIRATES Under Ministry of Education Contract no. MOE/GEQIP-E/LICB/G-01/23 ISBN: 978-99990-0-010-9 BIOLOGY GRADE 11 I FDRE-Moe ethiopia #### **Contents** | Unit One: Biology and Technology | | |--|----| | 1.1 Learning from nature | 8 | | 1.2 Biology and technology | 12 | | 1.2.1The benefits of biology to technology | 12 | | 1.2.2Uses of technology in biology | 14 | | 1.3 Impacts of biology and technology on society and the natural world | 17 | | 1.3.1 Impacts of biology on the society and the natural world | 18 | | 1.3.2 Impacts of technology on the society and the natural world | 18 | | 1.4 Ethical issues in biology | 19 | | 1.4.1Ethical treatment of plants and animals during biological studies | 20 | | Unit one summary | | | Unit one review questions | 23 | | Unit Two: Animals | 26 | | 2.1. Characteristics of animals | 27 | | 2.2. Invertebrates and Vertebrates | 29 | | 2.2.1 Invertebrate Animals | 30 | | 2.2.2 Vertebrate Animals | 30 | | 2.3 Reproduction in Animals | 31 | | 2.3.1, Asexual reproduction in animals | 32 | | 2.3.2Sexual reproduction in animals | 32 | | 2.3.3 Reproduction in insects (complete and incomplete metamorphosis) | 34 | | 2.3.4Reproduction in Frog | 36 | | 2.3.5 Reproduction in Crocodiles | 38 | | 2.3.6Reproduction in Birds | 40 | | 2.3.7Reproduction in rat | 45 | | 2.4 The economic importance of animals (insects) | 48 | | 2.4.1Beneficial aspects of insects | | | 2.4.2 Harmful aspects of insects | 52 | | 2.5 Animal Behavior | 54 | | 2.5.1Types of Animal Behavior | 54 | | 2.5.2Patterns of Behavior | 58 | |---|-----| | 2.6 Homeostasis in animals | 61 | | 2.6.1Thermoregulation | 62 | | 2.6.20smoregulation | 67 | | 2.6.3Blood Sugar Regulation | 68 | | 2.6.4 Control of homeostasis | | | 2.7 Renowned zoologists in Ethiopia | 71 | | Unit two summary | 73 | | Unit two review questions | 75 | | Unit Three: Enzymes | 79 | | 3.1. What are enzymes? | 80 | | 3.2 Properties and functions of enzymes | | | 3.2.1 General properties of an enzyme | 82 | | 3.2.2The function of enzymes | 85 | | 3.3 Protein structures | 88 | | 3.4 Enzyme substrate models | 92 | | 3.4.1Enzyme-substrate binding models | 92 | | 3.4.2Enzymatic transition state | 93 | | 3.5 Enzyme regulation | 94 | | 3.6 Types of enzymes | 97 | | 3.6.1 Enzyme structural classification | 98 | | 3.6.2 Basic classification of enzymes | 98 | | 3.7 Factors affecting enzyme action | 100 | | 3.7.1 Description on factors affecting enzymatic actions | 101 | | 3.8 Enzyme kinetics | 102 | | 3.9 Application of enzymes in industries and their benefits | 104 | | 3.9.1Uses of enzyme application | | | 3.10 Malting in Ethiopian tradition | 106 | | 3.10.1 Steps of modern malting | 107 | | 3.10.2 Why is malting for? | 107 | | 3.10.3 Traditional malting for local alcohol production | 108 | | 3.11 Renowned Biochemists in Ethiopia | | | Unit three summary | 110 | | Unit three review questions | 111 | | Unit Four: Genetics | | |---|-----| | 4.1. The genetic materials | 114 | | 4.2. The structure and function of DNA and RNA | 115 | | 4.2.1. The Structure and function of DNA | 115 | | 4.2.3 DNA replication | 120 | | 4.2.2The structure and function of RNA | 123 | | 4.3 The process of cell division. | 124 | | 4.3.1Cell Division | 125 | | 4.4 Protein synthesis | 133 | | 4.5 Mendelian inheritance | | | 4.5.1Mendelian crosses | 138 | | 4.5.2Monohybrid cross | 139 | | 4.5.3 Dihybrid Cross | 142 | | 4.5.4Test Crosses | 144 | | 4.6 Sex determination. | 146 | | 4.7 Non-Mendelian inheritance | 148 | | 4.7.1Co-dominance, Incomplete dominance and Multiple alleles | 149 | | 4.7.2Rh factor inheritance in humans and its medical importance | 152 | | 4.7.3Sex-linked inheritance in humans | 153 | | 4.7.4Environmental effects on phenotype | 154 | | 4.8 Human pedigree analysis and its importance | | | 4.9 Genetic disorders | 159 | | 4.10 Genetic testing and counseling | 164 | | 4.11 Gene therapy | 165 | | 4.12 Breeding | 167 | | 4.12.1 Indigenous knowledge of Ethiopian farmers | 170 | | 4.13 Bioinformatics introduction | | | Unit four summary | 172 | | Unit four review questions | 175 | | Unit Five: The human body systems | 180 | | 5.1. Human Musculoskeletal Systems | 181 | | 5.1.1. Types of muscles | 182 | | 5.1.2. Mechanism of actions of skeletal muscles | 185 | | 5.1.3. The human axial and appendicular skeletons | 187 | |---|-----------------------| | 5.1.4. Joints | 190 | | 5.2 The reproductive system | 192 | | 5.2.1. Human reproductive system (Male and Female) | 192 | | 5.2.2Gametogenesis | 196 | | 5.2.2 Positive and negative feedbacks to control the menstrual cycle | 201 | | 5.2.3Fertilization and pregnancy | 203 | | 5.2.4 Mechanism of action of contraceptives | 204 | | 5.2.5 Causes of infertility in humans | 209 | | 5.2.6The major sexually transmitted infections (STIs) in Ethiopia | 212 | | 5.2.8. Epidemiology of STIs in Ethiopia | 220 | | 5.3 Harmful traditional practices | | | 5.3.1 Harmful traditional practices | 222 | | 5.4 Family planning | 223 | | 5.4.1 Risks related to the lack of family planning | | | 5.4.2 Family planning actions | | | 5.4.3 Family planning services | 225 | | 5.5 Effects of alcohol use, chewing Khat, cannabis and other drug uses on S | STIs transmission and | | unwanted pregnancy | 225 | | 5.5.1 The effects of alcohol uses | 225 | | 5.5.2 Effects of chewing Khat | 226 | | 5.5.3 Effects of drug uses | 227 | | Unit five summary | 229 | | Unit five review questions | | | Unit Six: Population and natural resources | 236 | | 6.1.1 Population size, density and dispersal | 238 | | 6.1.2Exponential and logistic growth in populations | | | 6.1.3 Demographic structure | | | 6.1.4 Population regulation | 252 | | 6.2 Natural resources | 254 | | 6.2.1 Renewable | 255 | | 6.2.2Non-renewable | | | 6.3 Conservation of natural resources in Ethiopia | 256 | | 6.4 Impact of traffic accident on wild and domestic animals | 262 | | 6.5 Impact of human activities on the environment | 265 | |---|-----| | 6.5.2Climate change | 268 | | 6.5.3Global warming | 269 | | 6.5.4Ozone layer depletion | | | 6.5.5Acid rain | 273 | | 6.5.6Loss of Biodiversity | 274 | | 6.5.7Toxic bioaccumulation | 27 | | 6.5.8Resource depletion | 278 | | 6.6 Indigenous conservation practices in Ethiopia | | #### **Unit One: Biology and technology** BIOLOGY GRADE 11 1 FDRE-Moe ethiopia #### Unit learning outcomes After the successful completion of this unit, the student will be able to: - Adapt technologies from nature - Illustrate the impact of biology and technology on society and the natural world - Indicate the benefits of biology to technology and vice versa - Recognize ethical issues in biology #### 1.1 Learning from nature After the successful completion of this section, the
student will be able to: - Learn technologies from nature - Recognize devices copied from biological nature - Design devices from biological structural mechanisms Nature is the What is imitation? physical, and material world of life that exists without human intervention. It includes landscape sceneries, water and forest ecosystems, weather, organisms, geology, celestial bodies and inanimate objects, etc. Organisms have well-adapted structures and that make them survive on their immediate environment. Nature provides us with doable structures and forms which can be developed as functional applicable mechanisms for various and #### **Self-questioning** Before starting this section, ask yourself this question 'What do I know about learning from nature and what do I want to learn from this section?' technological systems. Scientists engineers learn from nature through imitation of physical structures, shapes, materials and functional mechanisms of natural facts. The better their understanding the diverse nature of biological materials, the better their ability to develop technologies. Using imitation of nature, they can sketch the biological structures, design functional mechanisms and tune into more efficient technologies at macro (large) and nano (very small) scales through imitation. What are the technologies imitated from nature? The design and adaptation of many technologies we utilize today imitated natural working systems. Many technologies have been imitating birds, bats, termites, spiders, bees, ants and parts of human body since timeless. The successful design of technologies from robotics to material sciences was through imitating nature (Figure 1.1). Figure 1.1 Nature imitated technologies and architectures Nature inspires scientists and engineers and serves as a reliable source of knowledge, ideas and concepts from which technologies can be developed. Buildings were made through the imitation of the mound architecture of termites that have chimneys, constant temperature and humidity. Examples of technology that imitates nature: - 1. Swallow nests have inspired the house building design. - 2. Weaving technologies have been developed by studying the formation of spider webs. - 3. Buildings have been made through the imitation of the mound architecture of termites. These buildings mimic termite mound architecture that has chimneys with constant temperature and humidity. An example is The East gate Center in Harare (Figure 1.2). BIOLOGY GRADE 11 3 FDRE-MOE ETHIOPIA Termite's mound **East Gate Building** Figure 1.2 Mound inspired architecture for the East Gate Building - 4. The first heavy aircraft technology was designed by imitating birds. Aircraft engineers designed aircraft wings and their flight techniques by imitating the wings of birds and bats - 5. Engineers imitating human eyes made the technology of photograph camera. - 6. The movement of bio-robots was designed from the movement of kangaroo. - 7. Injection needle technology was copied from mosquito **proboscis** (Figure 1.3). Figure 1.3 Injection needle imitated from a mosquito's proboscis - 8. The sensors of electrical devices were imitations of biological neurons. - 9. A cutting saw was imitated from the nature of the sharp teeth of animals. - 10. Synthetic bulletproof vests are imitations of the spin silks of spiders. - 11. Ceramics are an imitation of the nature of crack-resistant shellfish exoskeleton. - 12. A robotic arm was imitated from an elephant trunk (Figure 1.4). Figure 1.4 Robotic arms imitated from elephant trunk #### Lab activity 1.1 Construction of models imitating #### nature Construct a model of a human hand to imitate nature. #### Materials • Locally available resources #### Procedure - Construct a human hand model with jointed finger structures - Paint the model with pertinent color #### Assessments - 1. How closely does your model hand match a natural human hand?' - 2. What is missing in imitating the model to full function of human hand? - 3. What other technologies could be developed by imitating the nature and produce other technologies? BIOLOGY GRADE 11 5 FDRE-MoE ETHIOPIA #### 1.2 Biology and technology After the successful completion of this section, the student will be able to: - Describe the use of technology in biology - Explain biology and technology - Explain the benefits of biology to technology #### **Self-questioning** Before starting this section, ask yourself this question "What do I know about the role of biology in technology and technology in biology, and what do I want to learn from this section?" What does the blend of biology and technology form? Biology is the study of life: the structures, functions, growth, origins, evolution and distribution of living organisms. Technology is the application of scientific knowledge, skills, methods and processes for the production of devices and tools for scientific investigations. The blend of biology and technology forms biotechnology, which is a technology that utilizes biological systems to develop useful products. Biotechnology is the integration of natural and engineering sciences to achieve the application of organisms, cells, parts and molecular analogues for products and services. Examples: people use yeasts to produce bread and beer. #### 1.2.1 The benefits of biology to technology There are many benefits of biology to technology. Biology is a source of materials that enable us to imitate, design, adapt and develop modern technologies and solve complex human problems. The diversity of nature stimulates the development of new technologies. Scientists and engineers imitate nature to innovate, problem solve and expand their scientific understanding. Here are just a few examples of the benefits of biology to technology: - Medicinal plants: Many biochemical substances in plants have been used to develop medicines. Scientists have imitated nature to develop artificial versions of the these biochemical substances. - 2. **Gene engineering and biosynthetic materials**: Scientists have imitated the nature of human, animal and plant genes. The uses of imitating genes include gene engineering to cure genetic conditions and the creation of biosynthetic materials to repair damaged body tissues. - 3. **Building design:** Engineers have imitated the mound architecture of termites in the design of buildings with chimneys which have a constant temperature and humidity. - 4. **Bullet train design:** The noses (front) of bullet trains have been designed by engineers imitating the shape of the beaks of kingfishers when they dive into water (Figure 1.5). # Inquiry activity 1.2 Technologies imitating nature For each technology, identify the natural source(s) that was imitated: - 1. Hexagonal structures - 2. A brand new drone design - 3. Techniques for preserving live vaccines - 4. Powerful repellent spray - 5. Cutting saws Research the natural source(s) using the internet and/or available textbooks. Figure 1.5 Bullet train noses imitate the beak of a kingfisher #### 1.2.2Uses of technology in biology What are the uses of technology in biology? The uses of technology in biology are the ways in which technological tools can be applied to solve various human problems. It is the practical application of biotechnological instruments (products) in providing required human services and investigations of new biological questions. Biological studies that use technological tools include: - 1. **Biochemical** studies are helpful to investigate information on carbohydrates, proteins, lipids and nucleic acids. - Biomedical studies deal with providing detailed of information on the chemical components of medicinal plants. - 3. **Biophysical** studies are the science of using physical devices to gather biological information at all scales of biological organization (molecular, organismic, and populations). - 4. **Environmental** studies are a multidisciplinary system dealing with the interactions of humans with the environment. - 5. **Bioinformatics** is a scientific discipline involving computer technology to collect, store, analyze, and disseminate biological data and information (DNA and amino acid sequences). - 6. **Biogeographical** information is the study of the distribution of species along with geographic ecosystems through geological periods. The following are examples of technological devices: 1. A **digital thermometer** is an instrument used for measuring body temperatures (Figure 1.6). A **pregnancy urine test** is a tool that checks if a woman is pregnant or not by detecting the amount of the hormone Human Chorionic Gonadotropin (HCG), produced in the placenta around six to ten days after **fertilization** in either the urine (pee) or blood. The test result in one line is a **control line** showing negative (no pregnancy) and the other line (two lines) confirms the existence pregnancy (Figure 1.7). Figure 1.6 Digital thermometers Figure 1.7 Pregnancy urine test tool - 2. **The diabetic blood test** is a tool to measure the level of blood sugar taking sample blood from figure tip (Figure 1.8). - 3. An **HIV test** is a detector to identify infections with the virus or not (Figure 1.9). Figure 1.8 Diabetic test tool Figure 1.9 HIV test tool 4. **Microscopes** used to magnify objects (Figure 1.10). BIOLOGY GRADE 11 9 FDRE-MoE ETHIOPIA Figure 1.10 Microscope and its parts - **5. Computer Information Technology Scanning (CITS)** is a device used for investigating information on diseases or cancerous areas of the human body. - **6. Computed Tomography scan (CT scan)** is a sophisticated x-ray technology used to take many X-ray pictures of the body, used to detect and screen for variety of diseases and conditions (Figure 1.11). - 7. Positron Emission Tomography (PET scan) is an imaging technology device used to check for diseases or information in areas with cancer in the human body. It uses a special dye containing radioactive tracers that is swallowed, inhaled, or injected into
an arm vein conditionally. It visualizes and measures changes in metabolic processes and physiological activities like blood flow, chemical composition, and absorption (Figure 1.12). Figure 1.11 CT scan Figure 1.12 PET scan - **8. Geographical Position System (GPS)** is a device used to collect biogeographical information (biological data) on landscape mapping, plants, animals, and human movements (Figure 1.13). - 9. Handheld Body fat calculator device used to measure body fat (Figure 1.14). Figure 1.13: GPS Figure 1.14: Handheld Body fat calculator #### Lab activity 1.3 Uses of technological tools **Objectives**: To practice the uses of technological tools in learning biology Materials Thermometer #### Procedure - Measure the body temperatures of 10 students and record them on a table. - Make a graph showing the highest and the lowest temperature. - Visit a nearby health center and discuss the uses of pregnancy tests, diabetic tests, and HIV tests with the class #### 1.3 Impacts of biology and technology on society and the natural world After the successful completion of this section, the student will be able to: - Describe the impacts of biology and technology on society and nature - Explain the relationships between biology and technology - Determine the negative and positive impacts of biology and technology on the society and on nature #### **Self-questioning** Before starting this section, ask yourself this question 'What do I know about the impacts of biology and technology, and what do I want to learn from this section?' BIOLOGY GRADE 11 11 FDRE-MoE ETHIOPIA What are the impacts of biology and technology? The impacts of biology and technology refer to factors that pose positive or negative effects on the society and the natural world. The advancements of biological information and technological devices can highly influence or control the societal and natural world. #### 1.3.1 Impacts of biology on the society and the natural world The impact of biology refers to the effects arising from the advancement of biological knowledge and innovations. #### **Examples:** - Ensuring food security as a result of an increase in productivity - Medicine and disease treatments have resulted in improved health and longevity. - Achieving better supply of energy and clean water. - An increase in industrial production due to microbial action - Creating antibiotics to treat bacterial infections - Technological devices made from biological materials by biological information advancements to provide services that influence, treat, and control the society and the natural world negatively or positively. - Biological weapon production and use destroy the natural world. - Practicing a predetermined limit to have only boys (XY males) and avoid (XX females) of child sex chromosomes affects the society and the natural world will lead to the loss of females #### 1.3.2 Impacts of technology on the society and the natural world Technology is part of everyone's life. Technological products and their applications in various fields of study have solved societal problems and had significant societal and environmental impacts. However, industrialization and subsequent technological advancements have resulted in the misuse and destruction of our natural environment. These technologies have damaged our world in two main ways through pollution and the depletion of natural resources. #### **Examples:** - 1. Industrial emissions and effluents pollute clean air and drinking water. - 2. Biochemical agents, pesticides, and fertilizers cause toxicity and biohazards. #### **Inquiry activity 1.4 Learning biology from professionals** Invite professionals from the health and agricultural offices to participate in the discussion. - The impacts of biology on society and the natural world - The impacts of technology on society and the natural world - Determine the positive and negative effects of technology and biology. #### 1.4 Ethical issues in biology After the successful completion of this section, the student will be able to: - Define ethical issues in biology - Explain ethical issues in medicaments - Respect ethical issues in biology #### **Self-questioning** Before starting this section, ask yourself this question: "What do I know about ethics in biological studies and what do I want to learn from section?" Why do sciences have ethical dilemmas? Ethical issues biology are in those issues that arise concerning the rightness or wrongness of using biological discoveries for the health and wellbeing of humans. Ethical issues in biology deal with a variety of concerns related to biotechnology, medicine, and the environment including, the rightness or wrongness of using biotechnological information, products, or devices on human health and lifestyles and livelihood systems. #### Inquiry activity 1.5 Invite forester and discuss Learn from foresters - The unethical treatments of plants being practiced by human beings - Respecting the physical biological materials of plants - Unethical uses of seeds, leaves, roots, twigs, or barks of plant species - Trees give shadow even for an axeman; everyone is responsible to plant trees **BIOLOGY GRADE 11** FDRE-MoE ETHIOPIA #### 1.4.1 Ethical treatment of plants and animals during biological studies What are treatments? Ethical treatment of plants and animals during biological studies is the process of subjecting animals and plants to various experiments and rigorous tests. #### 1.4.1.1. Ethical treatment of plants Plants are primary producers and feeders for all living organisms. Trees are living organisms that properly function in decentralized forms without any centralized order-providing unit (brain). Subjecting plant species to severe life-treating conditions leads to a total disappearance of plant species. Collecting seeds, berries, roots, leaves, bark or flowers for personal uses, medicaments, and other purposes (tooth brushing) affect the survival of the plant species and the community that depends on the plants Unethical treatment of plants: > Testing seeds or berries through destructive rays Cutting tree terminals for experiments - Consumption of all seeds and fruits without conservation - Unplanned cutting of trees or deforestation - Burning forests and seedlings for farmlands - Restructuring the shapes of trees for aesthetic appeal Care for plants is an ethical treatment and important for saving the jeopardized species and conserve for our common future. It is ethical to plant trees and it is a national responsibility. #### 1.4.1.2. Ethical treatment of animals in experiments In biological studies, researchers use animals to gain scientific understanding of the world. The ethical treatment of animals is a moral question of whether it is acceptable to harm animals for scientific research. Animals are sentient creatures that have a nervous system, feel painful feelings, emotional stress, and have interests and values. Given this, it is unethical to harm animals during experiments or rigorous testing. Unethical treatments of animals in research include approaches which expose animals to rigorous experiment that may injure or cause pain to animals. Researchers must reduce impacts of unethical treatments of animals through the three **Rs** principles described below (Reduction, Refinement, and Replacement). **A. Reduction** aims to minimize the number of animals used in experiments by improving experimental techniques and sharing information with others. Figure 1.15 the principle of reduction reduces animals used in research **B. Refinement** is cleansing experiments in a way that enables to reduce suffering of animals using less invasive techniques, better medical care, and better living conditions Figure 1.16: Proper handling safeguards experimental animals **C. Replacement** is substituting experiments on animals with alternative techniques using cell cultures instead of whole animals, biosynthesis, and computer simulated models. BIOLOGY GRADE 11 15 FDRE-MOE ETHIOPIA Figure 1.17: There are always alternatives #### Inquiry activity 1.6 learn from zoologist Invite zoologists to participate in a group discussion about: - Conservation of animals as sentient creatures - Reduction of suffering of research animals - Habitat, species, and ecosystem balance #### **Unit one summary** Human beings learn powerful lessons from nature like the technologies of flight, submarine, bullet train, flipper and other engineering and architectures. Biology is a natural science studying living organisms from the simplest to the most complex ones. Technology is the sum of techniques, skills, methods and processes used in the production of goods or services to accomplish objectives. Biology is dependent on technology in terms of using devices likewise; technology is dependent on biology in terms of identifying scientific information and imitating biotechnological devices from nature. Biology and technology are tightly blended and form **biotechnology**, which is useful in designing various devices and engineering systems to solve complex human problems. Biotechnology is the use of biology to develop new products, methods and organisms intended to improve human health and society. Biotechnological devices are tools used to solve day-to-day biological tasks and support the discovery of more information in the course of biological studies. The benefits of biology to technology are biological information on biological systems helpful to derive technological systems, working mechanisms and related products. The impacts of biology and technology on society and the natural world are positive and negative influences of using biologically derived technologies. Uses of technology in biology deal with technical applications in the biological study process to investigate biological information. Ethical issues in biology are concerned with respecting the values for all life forms, particularly the determining the right or wrong values that may
affect human rights to equality to live freely and naturally. Ethical issues in biology deal with questions related to unethicality, immorality, illegality, inequality, injustice, and disrespectful acts to the values and rights of someone. It also includes the commercialization and commodification of human organs; assisted reproduction techniques; and manipulation of basic biological organ systems. #### Unit one review questions #### Part I. True or false items **Instructions:** Write "true" if the statement is correct and "false" if it is not correct. - 1. Humans started house building from swallows. - 2. Blending of biology and technology make biotechnology. - 3. The East Gate Center building in Harare is designed by imitating termites mound. - 4. Nature is a reliable source of knowledgeable ideas. BIOLOGY GRADE 11 17 FDRE-MoE ETHIOPIA 5. Modern technological instruments have learnt from nature by imitation. - 6. Animals are sentient creatures with the capacity to feel pain. - 7. Care for plants is unethical treatment of plant species. - 8. Replacing experimental animals with the use of biosynthetic tissues is an ethical treatment of research animals #### P | Part | II. Mu | ultiple-choice Test Items | | | |--|---|-------------------------------------|---|--| | Inst | ructio | ns: Choose the correct answer from | om the given alternatives. | | | 1. | Bio | technology is a technology that ut | tilizes to develop different products. | | | | A. E | Biotech | C. A and B | | | | В. Е | Biological systems | D. All | | | 2. | . The system of manufacturing biological elements is | | | | | | Α. | Synthetic biology | C. Environmental biology | | | | B. F | Plant biology | D. Animal biology | | | 3. | 3. The device used to collect geographical data or information is | | | | | | Α. | CIT scans | C. Microscope | | | | В. | GPS | D. X-ray | | | 4. | The sui | m of techniques, skills and process | ses used in the production or delivery of services is | | | | A. E | Biology | C. Technology | | | | В. Е | Biochemistry | D. Genetic engineering | | | 5. | The inf | luences of biological and technolog | gical products against on society and nature are | | | | A. Benefits of biology and technology | | | | | B. The advantages of biology and technology C. Development of biology and technology | | | chnology | | | | | | ology | | | | D. 1 | Impacts of biology and technology | | | | 6. | An inst | rument used to measure human be | oody temperature is | | | | A. N | Microscope | C. Barometer | | | | В. Т | Thermometer | D. CT scan | | | 7. W | hat are | industrial wastes? | | | | | Α. | Effluents | C. Air pollution | | | | B. | House wastes | D. Vehicle wastes | | | 8 | . Soil fe | ertilizers can cause | | | | | A . To | oxicity B) | C. A and B | | | | B . B | iohazards | D. All | | 9. Designing technologies from the nature is through A. Sketching C. Drawing B. Imitation D. Photographing 10. Plants have A. Centralized function systems C. Decentralized function systems B. Brain led functional systems D. All system units are not functioning #### Part III. Essay questions **Direction:** Write a short answer to each question 1. Explain what and how humans learn from nature. 2. Describe the importance of biological systems to design technologies. 3. What are the ethical issues of biology? BIOLOGY GRADE 11 19 FDRE-Moe ETHIOPIA #### **Unit Two: Animals** #### **Unit learning outcomes** After the successful completion of this unit, the student will be able to: - Describe the characteristics of animals. - Differentiate between vertebrates and invertebrates - Compare and contrast reproduction in vertebrates. - Evaluate the economic importance of animals (insects) in agriculture, food, industry, health, and medicine - Explain animal behavior - Discuss the types and patterns of animal behavior - Discuss homeostasis in animals: thermoregulation, osmoregulation and sugar balance - Appreciate the work of a renowned zoologist in Ethiopia or in your locality #### 2.1. Characteristics of animals After the successful completion of this section, the student will be able to: - List the characteristics of animals - Explain the common characteristics of animals #### **Self-questioning** Before starting this section, ask yourself this question: "What Characteristics of animals do I know and what do I want to learn from this section?" Think about all the animals in your environment. They may be domestic animals, wild animals, or animals in zoos and sanctuaries. There are diverse groups of animals in the world. What are the characteristics of animals? Mention it as much as you can. In previous grades, you have learned about the types of cells (prokaryotes and eukaryotes) and the characteristics of animals and plants. Do you remember? We hope that you do. This unit provides you with a review of the characteristics of animals and details of reproduction in some sampled animals. BIOLOGY GRADE 11 21 FDRE-MOE ETHIOPIA Animals are eukaryotic, multicellular, heterotrophic, and sensitive to stimuli; and they reproduce, protect themselves, move, respire, excrete, grow, and have different body symmetries. #### Inquiry activity 2.1 Studying characteristics of animals Think of the characteristics of animals. What are the most common characteristics of animals? Share your experience with a classmate near to you. Be in a group, search from library and the internet about the characteristics of animals, discuss and present it to the class in relation to the following characteristics. Protection Eukaryotic Respiration Excretion Body symmetry Reproduction Multicellularity Sensitivity Motility Nutrition - heterotrophs Growth Although animals have such common characteristics, they also have characteristics that distinguish one group from another. Animals can be categorized into two major groups based on the presence or absence of a backbone: vertebrates and invertebrates. Vertebrates are further classified into homeothermic (warm-blooded) animals that include mammals and birds, and poikilothermic (coldblooded) animals that include fish, reptiles, and amphibians. Invertebrates are also classified into porifera, platyhelminthes, cnidaria, arthropoda, Annelida, echinidermata, and mollusca. Arthropods are again classified into crustacea, spiders, insects, and many-legs as shown below (Figure 2.1). Figure 2.1 Classifications of animals In this unit we are not able to discuss all of these groups in detail. We will focus on the general characteristics and reproductive cycles of the two major groups, invertebrates and vertebrates, using some examples from mammals, birds, reptiles, amphibians and insects. #### 2.2. Invertebrates and Vertebrates After the successful completion of this section, the student will be able to: - List the main characteristics of invertebrates and vertebrates. - Compare invertebrates with vertebrates' characteristics. ## Self-questioning Before starting this section, ask yourself this question: "What do I know about vertebrates and invertebrates and what do I want to learn?" BIOLOGY GRADE 11 23 FDRE-MOE ETHIOPIA #### 2.2.1 Invertebrate Animals Invertebrates are animals that do not have a backbone or vertebral column. This group of animals is the most diverse group of animals in the world. How do invertebrates differ from vertebrates? Explain. They are found almost everywhere, from the hottest deserts and the deepest seabeds to the darkest caves and the highest mountains. Invertebrate animals lack a rigid internal skeletal system. Many invertebrates are soft-bodied. However, some of them have an external skeleton called an exoskeleton, usually made of chitin, which protects their soft inner bodies. Invertebrates are cold-blooded, and hence, do not regulate their body temperature. This group includes earthworms, insects, spiders, snails, sponges, jellyfish, lobsters, crabs, sea stars, and squid. # Inquiry activity 2.2 Studying invertebrates Observe your surroundings and identify invertebrate animals. Discuss other common/unique characteristics they have other than the lack of backbone you observed. #### 2.2.2 Vertebrate Animals How do invertebrates differ from vertebrates? Explain. Vertebrates are the most advanced groups in the animal kingdom. They are a highly advanced group of animals. These groups of animals possess a well-defined internal skeleton system with cartilage and a backbone or vertebral column separated into an axial skeleton (skull, vertebrae, ribs and sternum) and appendicular skeleton (girdles and appendages). The skull and vertebrae protect the highly developed brain and the nerve cord respectively. Vertebrates have more complex and specialized organ systems such as the circulatory systems, respiratory systems, nervous systems, and excretory systems. The circulatory system is a closed circulatory system with a ventral heart having 2-4 chambers and a median dorsal artery. The respiratory system consists of either gills or lungs. They have a centralized nervous system with a brain and sensory organs (eyes, ears, nostrils). ## Inquiry activity 2.3 Studying vertebrates Observe your surroundings and identify vertebrate animals. Discuss what other common or unique characteristics they have other than the backbone. The excretory system of vertebrates consist of paired kidneys. They have bilaterally symmetrical. This group includes mammals, birds, fish, reptiles, and amphibians. Vertebrates such as fish, reptiles, and amphibians are cold-blooded abimals, whereas birds and mammals are warm-blooded animals (see homeostasis in the next section). All vertebrates are chordates. but not all chordates vertebrates. Why? What are chordates? are ### Inquiry activity 2.4 Comparing invertebrates and vertebrates Based on the result of your study in
activities 2.2 and 2.3 above, discuss the difference between vertebrate and invertebrate animals using the following features such as backbone, exoskeleton, body symmetry, circulatory system, nervous system, mode of nutrition, and reproduction with examples. Use a table to compare and contrast. #### 2.3 Reproduction in Animals After successful completion this section, the student will be able to: - Examine reproduction in invertebrate and vertebrate animals. - incomplete Discuss complete and metamorphosis. - Describe how rats, birds, frogs, and crocodiles reproduce. - Compare and contrast reproduction in rats, birds, frogs, and crocodiles. #### **Self-questioning** Before starting this section, ask yourself this question: "What do I know about reproduction in animals and what do I want to learn from this section?" Reproduction is one of the common characteristics of animals that enable them to ensure the continuity of their species. Thus, reproduction is the process by which living organisms duplicate themselves. What is reproduction? How do animals reproduce? What is its significance? There are two types of reproduction in animals. These are asexual reproduction and sexual reproduction. Although the majority of animals undergo sexual **BIOLOGY GRADE 11** FDRE-MoE ETHIOPIA reproduction and have similar forms of development, a few groups of animals also undergo asexual reproduction. #### Inquiry activity 2.5 Studying asexual reproduction Be in groups and search from the library or internet and - 1. Discuss in class the following forms of asexual reproduction: budding, fragmentation, parthenogenesis, etc. with specific examples of animals that undergo this type of reproduction. - 2. What common features have you observed in budding, fragmentation and parthenogenesis as a form of asexual reproduction? #### 2.3.1. **Asexual reproduction in animals** As you have learned in previous grades, asexual reproduction is a type of reproduction that involves a single individual and does not require the fusion of gametes from two parents. Asexual reproduction in animals is more common among invertebrates than in vertebrates. Budding and fragmentation are the most common forms of asexual reproduction especially in aquatic animals. The other form of asexual reproduction in animals is parthenogenesis. In this type of reproduction, unfertilized eggs develop into new offspring as in some insects and vertebrates #### 2.3.2 Sexual reproduction in animals In previous grades, you learned that sexual reproduction is a type of reproduction that involves two individual parents and requires the fusion of gametes from two parents (male and female). It produces offspring that have genetic material from both parents. The parents are diploid organisms with a complete set of chromosomes (2n). Sexual reproduction involves different male and female reproductive structures with different functions. One of the most important functions is the production of haploid cells called gametes (n) for the transmission of genetic information from parents to offspring. In sexual reproduction, males produce sperm and haploid cells (n) in the testes where sperm cells are stored in the epididymis until ejaculation. On the other hand, females produce an ovum or egg haploid cell (n) that matures in the ovary and the fusion of sperm cells with female gametes produces a zygote through the process of fertilization. There are two types of fertilization: external and internal. In the next section, we shall see the similarities and differences between external and internal fertilization. In animals that use internal fertilization, the eggs are released from the ovary into the uterine tubes for fertilization, but eggs are released into the aqueous environment in animals that use external fertilization. The fertilization of an egg by sperm produces a single-celled diploid fertilized egg called a zygote (2n), which develops into an embryo and then into an individual organism. The general animal life cycle in sexual reproduction is shown below (Figure 2.2). Figure 2.2 Sexual reproduction and life cycle of animals After fertilization, a series of developmental stages occur in embryonic development (Figure 2.3). The first stage is cleavage, which involves a series of mitotic cell divisions of the fertilized egg (zygote). This cell division results in an eight-celled structure. The second stage is another cell division and rearrangement of cells into hollow structures called blastulae. Then, the blastula undergoes further cell division and rearrangement with the process called gastrulation. The process of gastrulation produces a gastrula that has **different cell layers called "germ layers"**. By the process of organogenesis, these germ layers later develop into different tissue types, organs, and organ systems. Organogenesis is the formation of organs during embryonic development. The embryo eventually develops into an adult with all tissue types, organs, and organ systems. BIOLOGY GRADE 11 27 FDRE-MoE ETHIOPIA Figure 2.3 Embryonic development #### **Inquiry activity 2.6 Investigating reproduction in animals** Be in groups and search from library or the internet about reproduction in animals and: - 1. Compare and contrast asexual and sexual reproduction in animals. - 2. Compare internal and external fertilization in animals with sexual reproduction - 3. Why internal fertilization is more advantageous for land animals as compared to aquatic animals? - 4. What major features are associated with internal fertilization in animals? - 5. Compare the advantages of sexual reproduction over asexual reproduction - 6. Define zygote, cleavage, blastula and gastrula - 7. How tissues, organs and organ systems develop from germ layers, discuss and present it to the class. The next section deals with sexual reproduction in animals some sampled animals. We shall focus on the sexual reproduction of insects from invertebrate animals and frogs, crocodiles, birds and rats from vertebrate animals. ### 2.3.3 Reproduction in insects (complete and incomplete metamorphosis) Insects that constitute the most diverse groups of animals are the largest class of the phylum Arthropoda (the animal phylum). They have segmented bodies, jointed legs, and external skeletons (exoskeletons). Insects include flies, grasshoppers, lice, butterflies, bees, and beetles, to mention some of them. They undergo sexual reproduction and have their own life cycle. The following figure shows an example of the male and female reproductive structure of the honeybee (Figure 2.4). Figure 2.4 Reproductive structures of the honeybee # Inquiry Activity 2.7 Examining reproductive structures of the honeybee Be in groups and search from the library or internet about the function of each male and female reproductive structures as indicated in Figure 2.4 above. During sexual reproduction, eggs are usually fertilized internally. However, some insects undergo parthenogenesis, a process in which an individual develops from unfertilized eggs. In sexual reproduction, the male produces sperm and fertilizes the egg produced by the female during mating. After fertilization, the female insect lays eggs and hatches them after completing their development. After hatching, insects undergo a series of major changes in body structure as they develop. This series of changes is called metamorphosis. Chemical substances in the insects control the process of metamorphosis. There are two types of metamorphosis: Figure 2.5 Complete metamorphosis in honeybees BIOLOGY GRADE 11 29 FDRE-MOE ETHIOPIA complete metamorphosis incomplete metamorphosis (Figures 2.5 and 2.6). Complete metamorphosis has four stages whereas in complete metamorphosis has three stages. For instance, in honeybees, the four stages complete metamorphosis are egg, larva, pupa, and adult and in grasshoppers, the three stages of incomplete metamorphosis are egg, nymph, and adult. Figure. 2.6 Incomplete metamorphosis in grasshoppers ## Inquiry activity 2.8 Examining reproduction in grasshopper and metamorphosis Be in groups and search for information about: - 1. Reproductive structures and functions of grasshopper - 2. The definition of each stage, as well as the similarities and differences between the two types of metamorphosis. - 3. Which chemical substance controls metamorphosis? How? - 4. After discussion, use a table to help you compare and contrast incomplete metamorphosis and complete metamorphosis. #### 2.3.4 Reproduction in Frog The common frog (Rana temoraria) is the most common in Europe. The grass frog genus Ptychadena goulenger is found throughout sub-Saharan Africa, including Ethiopia. Frogs such as Ptychadena harenna and Leptopelis ragazzi are found in the Bale Mountains and Shoa forests, Ethiopia. Frogs undergo sexual reproduction and have male and female reproductive structures. The following figure shows the male and female reproductive structures in frogs (Figure 2.7). Figure 2.7 male (left) and female (right) reproductive structure in frog #### **Inquiry activity 2.9 Examining reproductive structure of frog** Be in a group and search from the library or the internet about the function of the male and female reproductive structures of frogs indicated in Figure 2.7 above. Unlike birds, frogs do not produce amniotic eggs. Rather, they are usually covered in a jelly-like substance (Figure 2.8). What is the function of the jelly-like substance in frogs? They must lay their eggs in water to protect them from drying out. Frogs have external fertilization. However, internal fertilization also occurs in a few species of frogs. Unlike internal fertilization, in external fertilization, the female releases eggs from her body into the water and the male releases his sperm to fertilize the eggs. Be in groups: Investigate the disadvantages of external fertilization in frogs. How do they overcome this disadvantage? What is the advantage of laying a large number of eggs? Usually, frogs lay
a large number of eggs in the same place at the same time. BIOLOGY GRADE 11 31 FDRE-MOE ETHIOPIA Figure 2.8 Frog Eggs surrounded by "jelly" In a process called metamorphosis, after the fertilization of an egg by sperm, frogs go through a larval stage that is very different from the adult form. The fertilized eggs develop into a larval stage called a tadpole that is different from the adult frog (Figure 2.9). # Inquiry activity 2.11 Investigating metamorphosis Be in groups: Investigate metamorphosis in frog. How does it occur? What controls the process? What is the difference between a tadpole and an adult frog? Figure 2.9 The life cycle of a frog #### 2.3.5 Reproduction in Crocodiles Crocodilians are large semi-aquatic reptiles that live in different parts of the world. Crocodiles reproduce sexually involving both male and female parents. The male and female reproductive structures of crocodiles are shown in the figure below (Figure 2.10). Figure 2.10 male and female reproductive structure in crocodile #### **Inquiry activity 2.12 Examining reproductive structures of crocodiles** Be in group and search from library or internet about the function of each male and female reproductive structures as indicated in the Figure 2.10 above. The mating season for crocodiles usually begins in July or August and mating takes place under water. During mating, the sperm fertilizes the egg and develops in the female. They have internal fertilization. They lay their eggs and bury them in sand or deposit them in mound vegetation. The number of eggs a crocodile deposits varies from 10 to 100, which generally depends on the type of species (Figure 2.11). Unlike frogs, crocodiles have hard, leathery eggs that enable them to protect their young. #### **Inquiry** 2.13 activity **Investigation** Be in groups and investigate to find answers to these questions. - 1. Do you think that all of the eggs of the crocodile can be hatched and will survive? If not, why? - 2. What advancements or adaptations do crocodiles' reproductive systems have over frogs? **BIOLOGY GRADE 11** FDRE-MoE ETHIOPIA Figure 2.11 The life cycle of a crocodile #### 2.3.6 Reproduction in Birds How does the male transfer the sperm to the female for fertilization can occur? At your home, you know that chickens lay eggs. Chickens are one group of birds. Similar to other animals, reproduction in birds is one of the key processes that enables birds to produce new individuals and perpetuate their species. Birds reproduce sexually and have internal fertilization. Most bird species are monogamous but there are also polygamous species. Monogamous is usually a mating system between a single adult male and a single adult female for entire breeding seasons, whereas polygamous is a mating system with several partners during a single breeding season. #### **Inquiry activity 2.14** Be in groups and discuss the following question What is the significance of the difference between monogamous and polygamous species in birds? The male and female reproductive structures of birds are shown below (Figure 2.12). Figure 2.12 The reproductive structures of Male and female birds #### **Inquiry activity 2.15 Examine reproductive structures of birds** Be in groups and search from the library or internet about the function of the male and female reproductive structures of birds indicated in Figure 2.12 above. Unlike other animals, male birds do not have external genital organs whereas females have a single ovary. Reproduction in birds starts by the joining of an egg or ovum with a sperm cell in the oviduct. The ovum which is produced in the ovary and travels down through the oviduct for fertilization to occur. The oviduct consists of the infundibulum, magnum, isthmus, uterus, and vagina (Table 1). Table 2.1 Parts of oviduct and functions | Parts of the oviduct | Nature and Functions | |----------------------|--| | Infundibulum | A funnel-shaped upper portion of the oviduct Its purpose is to search out and engulf the yolk, causing it to enter the oviduct. | | Magnum | It is the longest part of the oviduct. Secretion of albumen: nearly all the egg white is deposited in the magnum. | | Isthmus | It is the relatively short portion of the oviduct Formation of shell membrane-inner and outer shell membranes The glands of the isthmus produce sulfur-containing amino acids that are important for shell membrane formation. | | Uterus | Developing an egg takes a longer period of time. Formation of eggshell-shell is formed over shell membranes. | | Vagina | • The final section of the oviduct is the vagina, which is | BIOLOGY GRADE 11 35 FDRE-MOE ETHIOPIA | Parts of the oviduct | Nature and Functions | |----------------------|---| | | separated by a sphincter presents in between the uterus and the vagina During oviposition, relaxation of the muscles allows the egg to leave the uterus, and it is almost immediately laid through the cloaca. | Both male and female birds have a structure called the cloaca. During mating, the male brings its sperm to the female cloaca, and the sperm from the male cloaca fertilizes the egg. The fertilized egg travels down to the uterus, forming a layer of albumen around it, which is followed by the shell membranes in the uterus (Figure 2.13). Then, the hard-shelled egg develops within the female with a fluid-filled amnion, a thin membrane forming a closed sac around the embryo. Figure 2.13 Structure of the oviduct and egg development in bird reproduction Birds lay eggs after the egg completes its development. The number of eggs a bird lays varies from a few to more than 10, depending on its species. For example, penguins and albatrosses lay few eggs, but chickens and ducks can lay more than 10 eggs. The egg of a bird has different parts. The major parts of the egg of a bird are the yolk, the chalaza, the albumen, the membranes, air sac and the shell (see Figure 2.14). ## Tv. #### **Inquiry activity 2. 16 Investigating reproduction in chickens** Be in groups, - 1. Describe reproduction in chickens; count the number of eggs chickens can lay at your home (if any) or visit nearby poultry farm and report to your classmate. Is there any difference in the number of eggs you counted from different chickens or among your classmates? What factors, do you think, determine the number of eggs? Why hens do lay eggs without rooster? - 2. Bring an egg into a laboratory, and examine its structures and functions. Figure 2.14 The egg structure of a bird **Incubation:** incubation or brooding is the process of keeping eggs warm with body heat while the embryos inside continue to develop after birds lay their eggs (Figure 2.15). In most cases, the female parent incubates the eggs, although males sometimes participate. When a breeding season approaches, the female will develop a brood patch to help transfer heat effectively. This brood patch has an area of skin with densely packed blood vessels that produces more heat and facilitates heat transmission to the egg. The brood patch will disappear at the end of the breeding season. Birds rotate their eggs periodically to ensure an even distribution of warmth. This helps the embryo to finish its development inside the egg (Figure 2.16). BIOLOGY GRADE 11 37 FDRE-MOE ETHIOPIA Figure 2.15 An incubation in birds Figure 2.16 Developing embryo **Hatching:** After incubation, the embryo completes its development and hatching occurs. During hatching, the chick develops a tooth-like structure at the beak's tip to break the eggshell. Moreover, the chick also communicates with its parents a day or two before hatching, with parents with some vocal sounds. The chick then starts to use the hard tip of its bill, a tooth-like structure called an egg tooth, to break out of the egg, and the young lose the egg tooth after hatching (Figure 2.17). Figure 2.17 Hatched eggs Parental Care in Birds: One of the methods bird use to protect their young is by building nests. Birds make nests in areas that are hidden in order to avoid predators. Some birds do not use nests. They simply lay their eggs on bare cliffs. Birds that make nests in an open area have camouflaged eggs. Discuss in your group to answer this question: Why do you think are eggs laid in so many different colors? What are camouflaged eggs? How does this help to protect the eggs? While the parental care of offspring lies on one or both parents, the length and type of parental care varies widely amongst different species of birds (Figure 2.18). In some species, parental care ends at hatching. Accordingly, the newly hatched chick digs itself out of the nest mound without any parental help and can take care of itself right away. Other species care for their young for an extended time. Figure 2.18 African Paradise Flycatcher caring for chicks #### 2.3.7 Reproduction in rat Rat (genus *Rattus*) is the name generally applied to numerous members of several rodent families. The black rat (*Rattus rattus*) and the brown rat (*Rattus norvegicus*) are among the most common types of rats species. They live virtually everywhere that human populations have settled; the black rats is predominantly live in warmer climates, and the brown rats are dominantly found in the temperate regions. Giant Mole rat (*Tachyoryctes macrocephalus*), also known as the giant root rat, is endemic to Ethiopia where it is
confined to high altitude shrub and grasslands in the Afro-alpine habitat such as the Bale Mountains. Reproduction in rats is representative of mammalian sexual reproduction. The male reproductive structure of a rat consists testes (singular testis), scrotum seminiferous tubules, epididymis, vasdeferens and penis with bacula (Figure 19a). Similarly, the female reproductive structure of a rat consists of two ovaries, oviducts, uterine horns and vagina with vulva (Figure 19b). BIOLOGY GRADE 11 39 FDRE-Moe ETHIOPIA Figure. 2.19 Reproductive system in rat, male (left) and female (right) #### **Inquiry activity 2.18 Examine reproductive structures of rats** Be in groups and - 1. Search from library or the internet about: - 2. The function of the male and female reproductive structures of rat as indicated in Figure 2.19 above. Like in other mammals, fertilization of the egg occurs inside the female, and the fertilized zygotes develop in the mother during a gestation period known as pregnancy. **Pregnancy and Development:** The average pregnancy time or gestation period of a rat varies depending on the species. The gestation period for a brown rat is 22 to 24 days, whereas the gestation period for black rats is usually 22 days and the gestation period for giant mole rats is 37-49 days. As shown above (Figure 2.3), after fertilization, each zygote divides and forms a hollow ball of cells that further develops into a blastocyst called a blastula. The blastulas travel down the oviducts, implant in the uterine horns, and begin to differentiate into embryonic tissue and extraembryonic tissue. The umbilical cord, a complex system of connecting blood vessels nourishes the embryo from the mother. The placenta transports oxygen from the mother to the embryo and removes waste from the embryo's environment, and the amniotic sac protects the embryo during pregnancy. Gradually, the embryo forms a neural plate, which later develops into brain and spinal cord, the arm and leg buds become visible, the nervous system pathways develop and the rat gives birth to hairless, deaf with sealed eyelids offspring. Rats normally give birth from 7 to 12 offspring per litter on average (Figure 2.20), but the number is fewer than this for giant mole rats. The mother feeds milk and, after 45 days, the young rats are fully weaned and are actively foraging and feeding. The age of sexual maturity also vary depending on species. In brown-black rats, the age of sexual maturity is 3-4 months old. Giant mole rats become reproductively mature when they are 4-6 months old. Figure 2.20 Pregnancy and development in rat **Parental care in rats**: Parental care in mammals is often critical for the survival and development of the offspring. Rats build nests to rear their young, called pups or kittens. The pups stay in the nest built by their mother until they are weaned. The female rats care pups regardless of which their true mothers are. If a mother dies, the other females will take over nursing her pups. Male rats do not participate in the parental care. BIOLOGY GRADE 11 41 FDRE-MOE ETHIOPIA ## Inquiry Activity 2.19 Comparing reproduction in animals The animals discussed above have some similarities and differences in their reproduction. Be in groups and Search for information from a library or the internet and Compare and contrast reproduction in frogs, crocodiles, birds, and rats and the advancement from frogs to rats in reproduction, for instance, in terms of reproductive structure, fertilization and development, etc. (hint-fertilization, egg laying with internal development). ### 2.4 The economic importance of animals (insects) After the successful completion of this section, the student will be able to: - Describe the economic importance of insects in agriculture and food production - Explain the economic importance of insects to industry - Explain the economic importance of insects in health and medicine ## Self-questioning Before starting this section, ask yourself this question: "What do I know about the economic and other importance of insects and what do I want to learn from this section?" Insects have plenty of economic importance in the world. You may think that most insects are harmful to us simply because they are pests, but they have very important benefits for human beings and the ecosystem. Insects are the most diverse animals in the world. They have both positive and negative impacts on our economy, our lives, and the ecosystem. While there are many harmful pests, there are also beneficial insects. ## Inquiry activity 2.20 Investigation Be in groups, visit agricultural institutions, industries, health institutions and medical center in your surroundings, and collect evidence with examples of beneficial and the harmful insects. section The following provides some descriptions of the beneficial, or useful and harmful aspects of insects in agriculture, food, industry, health, and medicine. #### Beneficial aspects of insects 2.4.1 #### A. Agriculture What are the benefits of insects in your locality? One of the major activities of agriculture is crop production. Regarding this, insects provide services to agriculture through pollination and regulation of pests. > Pollinators: insect pollinators are flower-visiting insects that forage on flowering plants to obtain plant-provided food (nectar, pollen). They have the potential to transfer male gametes ## Inquiry activity 2.21 Investigation Refer to internet sources or library books or consult with the nearby by experts or offices of agricultural bureaus to search about the role of insects in increasing agricultural productivity and economic value in terms of money (dollar or birr). Remember the lesson on plant reproduction from your previous grade. What is pollination? What is the commercial benefit of pollination? What is the advantage of pollination by insects over artificial pollination? (contained in pollen) to the female gametes, resulting in pollination. Pollination by insects is an essential activity for the reproduction of the majority of the world's flowering plants, including numerous cultivated plant species. Many plants depend on fruit pollination for seed and production. For instance, an estimated 35% of crop production yielded in the world is a result of insect pollination. This has huge economic value in the **BIOLOGY GRADE 11** FDRE-MoE ETHIOPIA world as well as in the country. Pest regulation: Insect predators and parasitoids that attack and feed on other insects, particularly on insect pests of plants are used in pest control. This type pest regulation is known as a natural biological control, which destroys harmful insects that infect both animals and plants. This natural biological control plays an important role in limiting potential pest populations. Important insects in pest regulation include mantis, lady beetles, ground beetles, rove beetles, flower bugs, lacewings and hover flies. For example, Stagmomantis insects, species of mantis feed on grasshoppers and caterpillars that damage crops. Chilomenes, a ladybird beetle, feed on aphids that damage cotton plants and destroys scale worms that are pests of orange and lemon trees respectively. Epicauta, a blister beetle, eat up masses of the eggs of locusts (Figure 2.22). Figure 2.22 Stagmomantis(left), Cheilomenes sulfurea(middle), Epicauta, Blister beetle(right) Insects also play a great role in feeding on unwanted weeds, creating channels for smaller organisms water, air, and roots to travel through to improve soil aeration. Their activities can enhance the nutrient cycle and physical properties of the soil, such as soil structure and tilt, and decomposers can help in the biochemical cycling of nutrients. #### **B.** Food Many species of insects are being used as a food for people in many countries. Evidence suggests that edible insects have potential to become a valuable protein source for addressing the global food demand. They are widely recognized as a sustainable source of animal protein. There are over 1,462 recorded species of edible insects in the world. Most insects are consumed in Asia and Central America. Usually crickets, grasshoppers, beetle and moth larvae and termites are eaten there. Being rich source of protein, grasshoppers have been eaten in many parts of the world. Moreover, insects are important sources of food for many vertebrates, including birds, amphibians, reptiles, fish and mammals. One of the many ways to address food and feed security for the over increasingly growing world population is through insect farming. Insects are everywhere and they reproduce quickly, and they have high growth and feed conversion rates and a low environmental footprint over their entire life cycle. They are nutritious, with high protein, fat and mineral contents and can be reared easily. What is your attitude towards using insects as a food in Ethiopia, particularly in your community? #### **C. Industry** One of the benefits of insect related to industries is their role in commercial products. Insects are being used to produce different materials at home and in industries. The following are some of the examples. - Production of Honey and Bee Wax: Honey and wax production are considered some of the commercial benefits of insects. For example, the honeybees (*Apis meliffera* L.) produce millions of tons of honey and wax every year around the world. - **Production of Silk:** The other commercially beneficial insects are silk worms (Bombyx mori and # Inquiry activity 2.22 Investigation Is there silkworm in your area? Investigate the production of silk fiber in Ethiopia. How are silk fibers produced from silkworm? other silk worms). Silkworms produce silk fibers, which are woven into the delicate, smooth material used for luxurious textiles and for different purposes in the textile industry (Figure 2.23). Figure 2.23 Silkworm (Left) Silk threads (Right) - Production of shellac: shellac is a resin secreted by Lac insects.
Among the many species of lac insects, *Laccifer lacca*, is the commercially cultured lac insect. Shellac is still in use as dyes, inks, polishes, sealing waxes, and as stiffening agents in the fabrication of felt hats. It is an animal originated commercial resin. - ▶ **Production of Cochineal:** Cochineal pigment is extracted from scale insects such as Dacylopius coccus. The cochineal pigment was important for the intensity and permanency BIOLOGY GRADE 11 45 FDRE-MOE ETHIOPIA of colors in painting. The cochineal pigment is still giving the colors in foods, beverages, cosmetics (lipsticks) and art product. Production of Tannic Acid: Tannic acid is a chemical compound used in dyeing goods made of leather in leather industries, for tanning and in manufacturing some inks. Tiny wasps in the family Cynipidae secrete some chemical and in response to this, the tree produces gall tissues that contain tannic acid. #### D. Health and medicine Some insects have medicinal value in treating different human and animal diseases. Since ancient times, insects and insect-derived products have been used as medicinal agents in many parts of the world. For instance, honey is applied to treat burns, chronic and post-surgical wounds. Bee and ant venom are used to treat joints pain. Recent research confirms that bee products promote healthy immune systems, improve circulation and decrease inflammation In your community, what insects have medicinal value? Ask the elders in your community and come up with insects or products of insects used to treat different types of human and animal diseases. Blister beetles secrete cantharidan, which acts as a powerful protein blocker in the human body and is effective in treating severe viral infections because it prevents the reproduction of some viral cells. Researchers subsequently discovered that cantharidan reacts with genetic material of hostile cells, and therefore may be useful in the treatment of cancerous tumors most resistant to radiation and chemotherapy. Several African cultures use poultices made from ground grasshoppers as pain relievers, especially for migraines. ### 2.4.2 Harmful aspects of insects What are the harmful insects in your locality? Although most insects are beneficial, they can also be harmful to humans and animals. Some insects are pests of plants, fruits, and grains in a store. They feed on several parts of green plants and crops, such as leaves, stems, buds, flowers, fruits, and seeds on fields and in stores at home thereby damaging crops and reducing production. These insects include locusts, caterpillars, bugs, hoppers, aphids etc. Locusts are among the most destructive of all insect pests. Countries have faced threats of swarms of desert locusts. Consequently, regional and international organizations have started to monitor desert locust populations and launch control measures when necessary. Locusts are particularly destructive in hot and dry regions when there is a sudden increase in their numbers. The prevalence of food shortage has further forced migrate. They migrate in huge swarms, for several kilometers away devouring virtually every green plant in their path. # Inquiry activity 2.24 Have you seen desert locust destroying crops in different parts of country? What modern, biological and traditional methods, do you think, can be used to control insects that damage crops? Consult any agricultural professionals in your area and calculate the loss of productivity of crops because of locust damage (if it appeared in your area). Some insects are also regarded as serious pests for stored cereal grains. The most common insect pests of stored cereal grains are: Rice Weevil (Sitophilus oryzae); Lesser Grain Borer (Rhyzopertha dominica); Rust Red Flour Beetle: (Tribolium spp.); Sawtooth Grain Beetle: (Oryzaephilus surinamensis); Flat Grain Beetle: (Cryptolestes spp.) Figure 2.24 Crops destroyed by desert locusts (left) and other insects (middle and right) Moreover, several insects serve as vectors for transmitting diseases from one organism to another or serve as intermediate hosts for several pathogens and transfer disease from one to another. For example, Anopheles mosquitoes transfer malarial parasites, "Plasmodium," from one person to another. Culex mosquitos spread filariasis and transmit filarial worms from infected to healthy people. The tsetse fly, Trypanosoma gambiense, also spreads the African sleeping sickness to the human population. The housefly (Musca domestica) spreads food and water-borne diseases to human populations. **BIOLOGY GRADE 11** FDRE-MoE ETHIOPIA Figure 2.25 Anopheles mosquitoes (left) Culex mosquitoes (middle) Tsetse fly (right) #### 2.5 Animal Behavior After the successful completion of this section, the student will be able to: At the end of this section, the student will be able to: - Define animal behavior - Describe the differences between innate and learned animal behaviors. - Identify patterns of behavior in animals # Self-questioning Before starting this section, ask yourself this question: "What do I know about animal behavior and what do I want to learn from this section?" Animals have different behaviours What is behaviour? behavioral patterns for survival and reproduction. Animal behavior means all the ways in which animals interact with other organisms and the physical environment. It includes the movements of animals, interaction of animals within and with the environment and learning about their environment. #### 2.5.1 **Types of Animal Behavior** differentiate How can we between different types of animal behavior? Animals have different behaviors and behavioral patterns. Animal behavior can be categorized into two main types: innate or inherent behavior and learned or acquired behavior. #### **Innate or inherent behavior** Innate or inherent behavior is an inborn behavior that is determined by genes and independent of experience and specific to a species. There are three types of innate or inherent behavior, and these are instinctive, reflexive, and orientative. The following examples are instinctive behaviours in animals. - Web making in spiders - Nest-building in birds - Swimming with dolphins and other aquatic species. - Dening of mouth in chicks of many bird species when their mother returns to the nest. - > Honeybees dance when they return to the hive after finding a source of food. The following examples are **reflex** behaviours in animals. A simple reflex action is a sudden, involuntary response to stimuli. For example, when you touch a sharp or hot object, you pull your hand away rapidly without even thinking about the action. You blink when something gets too close to your eye and you close your eyes when dust gets into them. These are simple reflex actions. During a reflex action, messages about pain do not travel all the way to and from the brain. Instead, they travel only as far as the spinal cord, and the spinal cord responds to the messages by giving orders to the muscles. This allows you to respond to pain more quickly. The following examples are **orientation** behaviours in animals. Taxis is directed in relation to a given stimulus. It is the orientation of an animal (directed either towards or away) in response to the source of stimulus. If the orientation is towards the stimulus, it is called as a **positive taxis**, and if it is away from the stimulus, it is known as a **negative taxis**. Example: The movement of cockroaches away from the source of light. What is the difference between phototaxis, chemotaxis, thigmotaxis and geotaxis? Explain with examples. **Kinesis** is undirected, random movement. Kinesis is a type of locomotory behavior in relation to the source of stimulus. The animal responds to the variation in the intensity of the stimulus and not the source or direction of the stimulus. Example: The movement of woodlice in relation to the temperature around them. #### Learned or acquired behavior Learned or acquired behavior is not inherited and not determined by genes. It is the type of animal behavior acquired during the lifetime of an individual. Learned behavior allows an individual organism to adapt to changes in the environment that are modified by previous experiences. Examples of simple learned behaviors include habituation, classical BIOLOGY GRADE 11 49 FDRE-MOE ETHIOPIA conditioning, operant conditioning, sensitization, latent and insight learning (Figure 2.26). Habituation is a simple form of learning in which an animal stops responding to a stimulus, or cue, after a period of repeated exposure. This is a form of non-associative learning, in which the stimulus is not linked with any punishment or reward. For example, you were reading a book when someone turned on the television in the same room. At first, the sound of the television might have been annoying. After a while, you may no longer have it noticed. Accordingly, it mean that you have become accustomed to the sound. **Classical conditioning** is a result of associative learning in which a response already associated with one stimulus is associated with a second stimulus to which it had no previous connection. Classical conditioning was discovered by Ivan P. Pavlov, a Russian physiologist. There are three stages of classical conditioning. Stage 1: Before conditioning. This stage states that an unconditioned stimulus (UCS) produces an unconditioned response (UCR) in an individual, which means that a stimulus in the environment has produced a behavior or response which is unlearned (i.e., unconditioned), and therefore it is a natural response which has not been taught. In this case, no new behavior has been learned yet. Stage 2: During conditioning. During this stage, a stimulus that produces no response is associated with the unconditioned stimulus, due to what it is known as a conditioned stimulus (CS). For learning to take place, the UCS must be associated with CS on a number of occasions, or trials at this stage. Stage 3:
After conditioning. This conditioning happens once the conditioned stimulus (CS) has been associated with the unconditioned stimulus (UCS) to create a new conditioned response. Operant conditioning is a result of associative learning in which a bit different from classical conditioning because it does not rely on an existing stimulus-response pair. Instead, whenever an organism performs a behavior or an intermediate step on the way to the complete behavior, the organism is given a reward or a punishment. It was discovered by B.F. Skinner. Based on the theory of operant conditioning, behavior will likely be repeated when the organism is reinforced (rewarded), and behavior will occur less frequently when it is punished. Skinner identified three types of responses or operant behavior. Neutral operants are responses from the environment that neither increase nor decrease the probability of a behavior being repeated. **Reinforcers** are responses from the environment that increase the probability of a behavior being repeated are called reinforcers. Reinforcers can be either positive or negative. **Punishers** are responses from the environment that decrease the likelihood of а behavior being repeated are called punishers. Punishment weakens behavior. **Insight learning** is learning which is based on past experience and reasoning and is a hallmark of the human behavior. Humans have used insight learning to solve problems ranging from starting a fire to traveling to the moon Sensitization, also referred to as reverse tolerance, is a non-associative learning process in which repeated administration of a stimulus results in the progressive amplification of a response. It occurs when a stimulus is presented above the tolerance threshold. For example, repetition of a painful stimulus may make one more sensitive to a loud noise. ## Inquiry activity 2.25 Examining animal behavior Be in groups and find explanations of learned behaviors such as habituation, classical conditioning, operant conditioning, insight learning, and sensitization with examples of scientists who discovered the behavior and how. (hint: Pavlov experiment, Skinner experiment, etc.) Look at the following figures (Figure 2.26) and identify the type of learned behavior each figure shows and report to your teacher. Figure 2.26 Different types of animal behevior ## Inquiry activity 2.26 Identifying animal behavior Critically observe animals in your area. What type of behavior do they show? Classify them into innate or acquired animal behaviors. Share your observation with your classmates #### 2.5.2 **Patterns of Behavior** What are the behavioral patterns of animals? There are different behavioral patterns in animals. Although the behavioral patterns are different due to the diversity of species, there are also common patterns of behavior exhibited by many species. Examples of behavioral patterns in animals include behavioral cycles, reproductive behavior, social behavior, competition, territory and communication. ### Inquiry activity 2.27 Studying behavioral patterns Observe behavioral patterns of animals in your locality such as behavioral cycles, reproductive behavior, competition, social behavior, territory communication with examples and present to your classmates. **Behavioral** cycles are behavioral pattern in which animals respond to periodic changes in the environment. It can be daily or seasonal cycles. For example, seasonal migration (movement) and Circadian rhythms (sleep and wake). Seasonal migration refers to the movement of various species of birds, insects, and mammals from one habitat to another during different times of the year because of seasonal fluctuations in factors such as the availability of food, sunlight, temperature, and breeding difficulty. An example is the migration of various whale and bird species from their summer habitats in the Arctic or Antarctic to the tropical waters near the equator and warmer latitudes, respectively Circadian rhythms, also referred as biological clocks, are 24-hour cycles that are part of the body's internal clock, running in the background to carry out essential functions and processes. One of the most important and well-known circadian rhythms is the sleep-wake cycle. Figure 2.27 Circadian rhythms ## Inquiry activity 2.28 Biological clock Let us say that you usually go to bed and sleep at 3:00 o'clock local time at night, and wake up at 12:00 o'clock local time in the morning. If you unfortunately sleep at 6:00 o'clock local time at night one day, what do you feel the next day? Why? Discuss this with classmates. Reproductive behavior: it is a behavioral pattern of animals to meet the needs of reproduction. It the coordination of the timing and patterning of reproductive activity. Reproductive behavior is vital for locating and selecting suitable mates, producing offspring, and rearing them successfully to independence. For example, courtship that involves sounds visual displays or chemicals and paradise dance. **Pigeons** **Social behaviour**. it is the behavioral pattern of animals commonly observed in that live in groups. Insects such as ants, termites, bees, exhibit some of the most well developed social behavior and wasps are social behaviors. One benefit of social behavior for these insects is that different individuals perform better in certain activities or division of labor as workers and soldiers. Other examples of social behaviour are observed in elephants, penguins, human beings and other primates. Figure 2.29 Elephants pay homage to dead relatives **Competition**: it is a behavioral pattern of animals observed during competition such as for resources. Example of the competition includes the competition between animals for space, territory, water, mates and food. Competition occurs naturally between in the same living organisms that coexist environment. There are two basic types of competition: intraspecific and interspecific. ## Inquiry activity 2.29 What is the difference between intraspecific and interspecific? Discuss in groups and write your answers with examples **BIOLOGY GRADE 11** FDRE-MoE ETHIOPIA **Territoriality**. It is abehavioral pattern that involves protecting spaces by an animal from others. The territories of animals contain all of the resources and conditions they need to survive. Many animals defend their area by using display behavior instead of fighting. The behavior gives signals for other animals to stay away. Displaying behavior is generally safer and uses less energy than fighting. For example, Male dogs and lions use pheromones in their urine to mark their territory. It means that they are signaling other dogs or lions to stay out of their yard. Male gorillas use display behavior to defend their territory by pounding on their chests and thumping the ground with their hands, robin by displays his red breast to warn other robins to stay away. Figure 2.30 Lion keeping territory **Communication behaviour**: it is a behavioural patter vital for the interaction of animals. Animals can communicate with the aid of sight, sound, tactile (with body touch), and chemical cues (they produce special chemicals called pheromones). For example, birds sing and frogs croak to communicate with each other. Ants communicate with chemicals called **pheromones** to mark trails to food sources so other ants can find them. Figure 2.31 Communication in ants #### 2.6 Homeostasis in animals After the successful completion of this section, the student will be able to: - Define homeostasis, homeotherms, poikilotherms, and thermoregulation. - Describe thermoregulation in homeothermic animals with examples. - Explain thermoregulation in poikilothermic animals with examples. - Explain osmoregulation and sugar regulation. - Discuss the mechanisms of controlling homeostasis. - Discuss the physiological methods of thermoregulation with examples. - Discuss the behavioral methods of thermoregulation with examples. - Discuss the behavioral methods of What happens to you during a cold day and a hot day? Why do you feel thirst? How do you respond? Why? ### **Self-questioning** Before starting this section, ask you self this question: "What do I know about homeostasis and what do I want to learn from this section?" Animals are directly affected by the environmental situations. A change in these situations may negatively affect the physiological functions of their bodies. Hence, they need to have a controlling mechanism for these factors in order to maintain stability in their body. Despite environmental changes, most animals maintain almost constant internal body conditions through homeostasis. Homeostasis is the self-regulatory process by which animals maintain stable internal conditions in their bodies regardless of external condition. Homeostasis helps animals to maintain equilibrium in the internal conditions of their bodies or cells at a set point (normal conditions). Animal body systems constantly adjust to internal and external changes in order to maintain this normal condition. A change in the internal or external environment (stimulus) is detected by receptors in the animals' bodies, which sends information to a control center (the brain). As a result, the body system responds to the stimulus and by returning the value back or toward the set point. Generally, homeostasis involves four component: stimulus, receptor, control center, and effector. **Stimulus:** is a change in the environment that forces the organism to response. It can be a change in body condition, such as an increase or decrease in body temperature, glucose, or water. BIOLOGY GRADE 11 55 FDRE-MoE ETHIOPIA Receptor: It detect the change in the environment or body condition and send signal to control center to counteract it, returning the internal condition to the normal. For example, thermoreceptors (the end of sensory neurons) - **Control center**: This receives messages from receptors and sends commands to the effector to
counteract the change. The hypothalamus, a region of the brain, is a control center for homeostasis. - Effector: It acts on the stimulus based on the command control center, counteracting the change and returning the internal body condition to normal. Organs or tissues such as the kidney, liver, or heart are effectors. For example, if the animal's body becomes too warm and the blood glucose rises, adjustments are made to cool the animal and lower the blood glucose level, respectively, by effector organs. This enables animals to function in the changing external and internal conditions that surround them. #### 2.6.1 Thermoregulation Thermoregulation is the process of maintaining the internal body temperature constant. Many organisms use behaviour, physiology, and morphology to keep their body temperatures within optimal level. Based on temperature regulation, animals can be divided into two groups: 1. **Poikilothermic animals**: These are animals that have a body temperature that is the same as their environment where their temperature varies with the environmental temperature are called poikilothermic animals... 2. **Homeothermic animals**: Animals that keep their body temperature constant in the face of changing environmental temperatures. #### **A. Poikilothermic Animals** Poikilothermic animals, also known as ectothermic animals, lack internal control over their body temperature. The body temperature of these organisms is generally similar to the temperature of the environment. However, individual organisms may burrow themselves into the ground on a hot day or rest in the sunlight on a cold day to keep their bodies temperature slightly below or above the environmental temperature. Some poikilothermic animals seek cooler areas during the hottest time of the day or may climb onto rocks to capture heat during the coldest time of the day. Some animals swim in water to cool their body. Some also use burrows to keep their bodies warm (Figure 2.32), and still others such as bees use group activity or stay in a hive to survive in cold seasons. Figure 2.32 Temperature regulation in poikilotherms #### **B.** Homeothermic Animals Homeothermic or endothermic animals—are those animals that can generate internal heat to maintain a constant internal body temperature. Their cellular processes operate optimally even when the environment is cold and loses heat when the environment is hot. They use morphological, physiological and behavioral methods of temperature regulation. Homeothermic animals can retain heat in a variety of ways when the environment is cold. Some of the ways of insulation used to conserve the body heat in these animals include fur, fat and feathers. For example, the arctic fox uses its fluffy tail as extra insulation when it curls up to sleep in cold weather (Figure 2.33). Homeothermic animals also use vasoconstriction in response to the coldest environment. Vasoconstrictionis the narrowing of blood vessels to the skin by the contraction of their smooth muscles to reduce blood flow in the peripheral blood vessels and retain heat. Shivering is another way of maintaining body temperature in cold. Shivering is caused by involuntary contractions of your muscles. Muscle contractions require energy from respiration that releases heat to warm the body. BIOLOGY GRADE 11 57 FDRE-MOE ETHIOPIA Figure 2.33 Temperature regulation during cold weather by puffing up feathers in birds (left), raising hair in human (middle) and fur in fox (right) Homeothermic animals can loss heat in a variety of ways when the environment is hot. Some of the ways of losing heat in response to the hottest environment include vasodilation which is the opening up of arterioles to the skin through the relaxation of their smooth muscles and by bringing more blood and heat to the body surface to loss heat and thereby cool their body through radiation and evaporation. Vasodilation is the widening of blood vessels at the skin surface to increase heat loss through the surface of the skin. Sweating is another way of maintaining body temperature during a hot season. Sweat, which is produced by the sweat glands travels up the sweat duct and out of the sweat pore onto the skin surface. The processes of coordination occur in the part of the brain called hypothalamus. When the temperature of the environment changes (decreases or increases), signals are sent to the brain to alert the hypothalamus. The hypothalamus then responds by activating the process of vasodilation, vasoconstriction, shivering and sweating to maintain the body temperature constant (Figure 2.34). Figure 2.34 The body temperature regulation In controlling the body temperature, there are four mechanism of heat exchange between an animal and its environment. These are radiation, evaporation, convection and conduction. ## Inquiry activity 2.31 Investigating thermoregulation Search from the library or the internet and discuss the following questions with a classmate. - 1. How vasodilation, vasoconstriction, shivering, sweating, hibernation and estivation help to maintain normal level of the body temperature? - 2. How does sweating cool the body? Relate this with the concepts in property of water. - 3. Take one of the heat exchange mechanisms (radiation, evaporation, convection and conduction) and discuss in relation to the concept you learned in physics and present it to the class. The body structure of animals also helps to maintain their body temperature. For instance, large ears in hot areas help to lose heat and cool their body, whereas small ears and fur in cold areas help to minimize heat loss and keep their body warm. The size of the animals also affects regulation of body temperature. As animals grow in size, their inside volume increases and the outside surface area decreases. This affects the surface-area-to-volume ratio or the surface-to-volume ratio of animals, which consequently affects heat loss. Look the following example (Figure 2.35). Figure 2.35 As size increases the surface area: volume ratio decreases # Inquiry activity 2.32 Investigating thermoregulation Form in groups of four and - 1. Identify which of the information given in this textbook (section 2.6.1) is physiological, behavioral and morphological methods of temperature regulation in animals and discus the difference between them. - 2. What do you think the reason for peoples living in desert/semi desert regions commonly drink hot tea/drinks and wear different clothing styles in low and high land areas? For example, since the size of an elephant is high, the surface area to volume ratio becomes smaller than the surface area to volume ratio of a rabbit. The greater the surface area-to-volume ratio an animal has, the more heat loss it will have, and the smaller the surface area- to- volume ratio an animal has the less heat loss it will have. The smaller the animal, the higher the surface area-to-volume ratio it will have, so it will have the higher heat loss. Example: a rabbit. On the other hand, the larger the animal, the smaller the surface area-to-volume ratio it will have, so it will have the lower the heat loss. Example an elephant. 1. Why do smaller animals have higher surface area-to-volume ratio and loss the higher amount of heat and larger animals have smaller surface area-to-volume ratio and loss lower amount of heat? 2. What is the significance of surface area to volume ratio in controlling body temperature? Animals also maintain their body temperature by searching out cold or hot habitats that allow them to alter its rate of heat loss or gain, making nests or digging burrows, huddling with conspecifics, and in human like wearing clothes or turning on an air conditioner as human do. ### 2.6.2 Osmoregulation Osmoregulation is a process that regulates the osmotic pressure of fluids and electrolytic balance in organisms to maintain homeostasis. About 60% of the human body is composed of fluids. Approximately 2/3 of our body's water content is in our intracellular fluids and the remaining 1/3 forms our extracellular fluid. Extracellular fluid consists of the fluid between cells (interstitial fluid) and the blood plasma. A disruption in the osmotic pressure can result in an imbalance in the movement of water between them and hence alter the concentration of their electrolytes. Hence, osmoregulation is important to balance osmotic pressure of fluids and electrolytes. In humans and other animals, this process is brought about by osmoreceptors, which can detect changes in osmotic pressure. Humans and most other warm-blooded organisms have osmoreceptors in the hypothalamus, part of the brain and in the kidneys. There are two major types of osmoregulation: **Osmoconformers**: organisms that try to match the osmolarity of their body with their surroundings are called osmoconformers. In other words, these organisms maintain the same osmotic pressure inside the body as outside water. Examples are invertebrates like starfish, jellyfish and lobsters. **Osmoregulators**: organisms that actively regulate their osmotic pressure, independent of the surrounding environment are called osmoregulators. Examples are many vertebrates, including humans. The kidney is the main organ responsible for osmoregulation in humans. When the water level in the body is high, the kidney releases a large amount of hypotonic urine. When the water level is BIOLOGY GRADE 11 61 FDRE-MOE ETHIOPIA low, it retains water and produces a low amount of hypertonic urine. Thus, the kidneys maintain the electrolytic balance of the body. The hypothalamus of the brain and Antidiuretic hormone (ADH) secreted from pituitary gland controls osmoregulation (Figure 2.36). Why does your urine sometimes become yellow and sometime not? Figure 2.36 Osmoregulation in human #### 2.6.3 Blood Sugar Regulation Glucose is the main source of energy for the normal functioning of our body systems including the brain. The body requires volumes of glucose in order to generate
energy during respiration. Hence, the body regulates the availability of glucose in our body to maintain its concentration at constant level in order to supply energy continuously. Two hormones produced from pancreas are responsible for controlling the concentration of glucose in the blood. These are **insulin** and **glucagon**. - When blood glucose level is high and the glucagon level is low, more insulin is released by the pancreas into the liver. Insulin promotes the conversion of glucose into glycogen so that the excess glucose can be stored for a later use in the liver. - When blood glucose level is low and glucagon level is high, more glucagon is released by pancreas into the liver. Glucagon promotes the conversion of glycogen into glucose so that the lack of glucose can be compensated for by the new supply of glucose. Glycogen is stored in the liver and converted in to glucose when the glucose level decreases. The effects of insulin and glucagon on the liver functions are as follows (Figure 2.37): Figure 2.37 Blood glucose level Regulation ## Inquiry activity 2.34 Investigation Form in groups of four and investigate what happens if: - Salt and water balance is not maintained in our body. - The concentration level of glucose in the blood is not maintained. Have you ever heard about diabetic patients? What is the cause? How can we maintain blood glucose level? #### 2.6.4Control of homeostasis How do negative and positive feedback controls homeostasis? When there is any change in the environment, an animal must make an adjustment to balance the situation. do this, animals have feedback mechanisms for the stimulus (change in the environment). A feedback mechanism is a physiological regulation system to return the body to its normal internal state. In the feedback mechanism, the receptor senses the change in the environment (stimulus) and sends a signal to the control center (the brain) which in turn generates a response that is signaled to an effector in muscles to contract or relax or glands to secrete hormones. There are two types of feedback mechanisms. To maintain homeostasis, animals—types of feedback mechanisms: Negative and positive feedback. Negative feedback occurs when a change in a variable triggers a response that reverses the initial change. In other words, negative feedback occurs when the activation of one component results in the deactivation of another. Positive feedback occurs when a change in a variable triggers a response that causes more change in the same direction. Unlike negative feedback, positive feedback occurs when the activation of one component causes the activation of another. # Negative and positive feedback mechanisms Negative feedback mechanism is homeostatic process that reverses the direction of the stimulus or any deviation from the normal. This means that if the level is too high from the normal, the body brings it down, and if the level is too low from the normal, the body lifts it up. In contrast to feedback mechanism, feedback mechanism accelerates a change in the body's physiological condition rather than reversing it. The positive feedback takes you further away from homeostasis while the negative feedback brings you back to it. A negative feedback system has three basic components. These are sensor (receptor), control center and effector. The sensor (receptor) monitors the physiological value not to deviate from the normal (receives stimulus) and reports to the control center if there is any deviation. The control center compares the value of the deviation from the normal and activates the effector if there is any deviation. An effector causes a change to reverse the situation and returns the value to the normal set point (Figure 2.38). There are numerous examples of negative feedback mechanisms that aid in maintaining a constant internal body condition. One of the examples in humans is the feedback mechanism in temperature regulation. This mechanism works by promoting either heat loss or heat gain. For instance, when the **BIOLOGY GRADE 11 UNIT 2: ANIMALS** sensor (receptor) receives a stimulus that indicates an increased body temperature from the normal range, it sends its message to the brain's temperature regulation center, where the control center stimulates a cluster of brain cells. Then, the control center causes vasodilatation so that the more blood flows to the surface of the skin allowing the heat to radiate into the environment, activate sweat glands to increase their output through diaphoresis (excessive sweating) to remove heat through evaporation across the skin surface into the surrounding environment. The reverse occurs when the body temperature drops from the normal range. It means that Hypothalamus vasoconstriction and deactivation of sweat glands occurs. However, if heat loss is severe, the brain (control center) causes skeletal muscles to contract and produce shivering to release heat while using up ATP for muscles contraction. Figure 2.38 Negative feedback mechanism of thermoregulation ## Inquiry activity 2.35 Examining feedback mechanisms Be in groups and investigate the feedback mechanism in blood glucose level regulation and osmoregulation from library or the internet sources. In the above example, as soon as your body has cooled off, negative feedback halts the signaling process to stop the process of sweating. In the opposite process, a **positive feedback loop** would continue to cause the body to sweat even though it was no longer hot. #### 2.7 Renowned zoologists in Ethiopia After successful completion of this section, the student will be able to - Mention renowned zoologists in Ethiopia - Describe the work of these scientists ### **Self- questioning** Before starting this section, yourself this question: "What do I know about Ethiopian zoologists and what do I want to learn from this section?" **BIOLOGY GRADE 11** FDRE-MoE ETHIOPIA Zoology is the study of animals in relation to their evolution, anatomy, physiology, behavior, habitats and health. Many zoologists from various Ethiopian universities have studied animals found though the country. Some researchers have invested their time and energy in studying animals in Ethiopia throughout their lives. This has a great contribution not only to the development of zoological science but also for the economic development of the country. Such researchers are patriots for their country because, as indicated in the general curriculum framework stipulates, "Patriotism is not only in showing love to the country and defending it in times of difficulties but also in exhibiting the diligence to successfully carry out a wide-range of duties and tasks which epitomize hard work" (p.20). ## Inquiry activity 2.36 Do you know any renowned Ethiopian zoologists in your area, who grew up or came from your home town/village or from any other place? Describe the works of these professors and the lessons you learned from them. Describe their work. Reflect on what you could learn from their work. #### **Unit two summary** Animals are diverse groups of organisms in the world. They have their own characteristics related to reproduction, cellular organization, mode of nutrition and energy generation. There are two major groups of animals: invertebrates and vertebrate animals. Invertebrates are animals that do not have a backbone/vertebral column whereas vertebrate animals possess welldefined internal skeleton system with cartilage and a backbone/vertebral column. While the majority of animals undergo sexual reproduction, a few groups of animals undergo asexual reproduction. Asexual reproduction is a type of reproduction that involves a single individual, which is more common among invertebrates than vertebrates. Sexual reproduction is a type of reproduction that involves two individual parents to produce offspring by having genetic materials from both parents through fertilization. Insects undergo sexual reproduction and a series of major changes undergone in their structure called metamorphosis: body Complete metamorphosis and incomplete metamorphosis. Frogs undergo external fertilization and develop through metamorphosis. Birds undergo internal fertilizations and lay eggs with external hard cover in nest or ground where they hatch after incubation. Reproduction in rats involves internal fertilization and the development of embryo is inside the female rat. Insects have plenty of economic importance in agriculture and food production health and medicine. Insect are important organisms for commercial products such as honey, wax, dyes and silk production and have medicinal value in treating different human and animal diseases. Animals have different behaviours that can be grouped into innate or inherent behavior and learned or acquired behavior. Animals also have different behavioral patterns such as behavioral cycles, reproductive behavior, social behavior, competition, territory and communication. Homeostasis is a self-regulatory process by which animals maintain stable internal conditions in their body. Thermoregulation is the process of maintaining the internal body temperature constant. Homeothermic animals maintain a constant body temperature of differing environmental regardless temperatures, whereas poikilothermic animals have a body temperature that is the same as environment. and thus. temperature varies with the environmental temperature. Osmoregulation is the process of controlling the amount of water and electrolytes by the help of osmoreceptors in order to retain homeostasis. The kidney plays an important role in the process of osmoregulation in humans by producing large amount of urine when there is excess water and small amount of urine when the amount of water in our body is low. Our body needs continuous supply of energy. The major source of energy for normal functioning of our body is glucose. Insulin and glucagon are the two hormones produced from pancreas to regulate glucose level. Insulin
decreases the glucose level and glucagon increases the glucose level to maintain sugar balance in our body. Homeostasis is maintained by negative feedback mechanisms that control the internal body change by reversing the direction of the stimulus. The feedback mechanisms involve the receptor that senses the change in the environment (stimulus), the control center (the brain) that generates a response and an effector in muscles that contract o relax or glands to secrete hormones to respond to the stimuli. ## Unit two review questions B. Thyroxine | | Multiple-choice questions | | | | |-----|---|--|--|--| | Dir | rections: Choose the correct ans | wer for each questions | | | | 1. | Which of the following is not a c | naracteristic of animals? | | | | | A. Autotrophs | C. Multicellular | | | | | B. Reproduce | D. Heterotrophs | | | | 2. | In the body organization patter | of an animal, if the left and right sides of the body are mirror | | | | | images of each other, it is ca | illed: | | | | | A. Radial symmetry | C. Bilateral symmetry | | | | | B. Asymmetry | D. All of the above | | | | 3. | Which of the following developm | mental processes develop into germ layers? | | | | | A. Cleavage | C. Gastrula | | | | | B. Blastula | D. A and B | | | | 4. | Which one of the following is a | common characteristic of all vertebrates? | | | | | A. The division of the body into a head, neck, trunk and tail | | | | | | B. Their bodies are covered with an exoskeleton | | | | | | C. The possession of two pairs of functional appendages | | | | | | D. The presence of a well-developed skull. | | | | | 5. | Why is sexual reproduction useful? | | | | | | A. It completes in a very short period of time | | | | | | B. It results in the rapid production of many offspring | | | | | | C. It increases genetic denvironment | iversity, allowing organisms to survive in an unpredictable | | | | | D. It needs less energy and | d leads to genetic variation in the offspring | | | | 6. | The phenomenon by which a fe | male gamete develops into a new organism without fertilization | | | | | A. Syngamy | C. Gametogenesis | | | | | B. Parthenogenesis | D. Embryogenesis | | | | 7. | | | | | | | A. Pheromone | C. Ecdysone | | | | | | THE EXPLOSES MITTIES FOR SAME AND THE FIRST PROPERTY OF PROPERTY OF THE FIRST PROPERTY OF THE FIRST PROPERTY PRO | | | D. All of the above | 8. Animals that have external fertilization | on produce a large number of gametes. What is the | |--|--| | reason? | | | A. They are small in size and wa | nt to produce more offspring. | | B. To increase chance of fertiliza | | | C. Sufficient food is available in v | water to feed offspring. | | D. Water promotes production of | | | 9. Which mating system involves a mal | e mating with multiple females during a reproductive | | season? | | | A. Androgeny | C. Polygamy | | B. Monogamy | D. Polygyny | | 10. The site of fertilization in the chicker | n is | | A. Uterus | C. Infundibulum | | B. Magnum | D. Ovary | | 11. Which of the following is called th | ne resting and inactive stage in the insect life cycle? | | A. The egg stage | C. The pupa stage | | B. The larva stage | D. The adult stage | | 12. Insects are considered to be benefic | cial because they/are | | A. Effective pollinators | | | B. Sources of useful products an | nd potential protein | | C. Biological control agents | | | D. All of above | | | 13. When laying eggs, a female insect re | eturns to her larval host plant, even though she has not fe | | upon this plant during her adult li | fe. This is an example of: | | A. Conditioning | C. Instrumental learning | | B. Habituation | D. A and C | | 14. Behavior patterns that change drasti | ically over the lifetime of an insect are probably: | | A. Learned | C. Afferent | | B. Innate | D. None of the above | | 15. A certain insect usually becomes act | ive each day at dusk. If kept in the dark all day, it will still | | become active around sunset eve | n though it cannot see the sun. This behavior is an | | example of: | | | A. Transverse orientation | C. Diurnal behavior | | B. A circadian rhythm | D. Exogenous entrainment | BIOLOGY GRADE 11 UNIT 2: ANIMALS 16. Given these terms related to negative feedback: 1. control center, 2. effector, 3. receptor, 4. response, 5. stimulus, arrange the terms in the correct order as they operate to maintain homeostasis. A. 1, 2, 3, 4, 5 C. 3, 2, 1, 5, 4 **B.** 2, 3, 5, 1, 4 D. 5, 3, 1, 2, 17. The mechanism of regulation of solutes and the loss and gain of water in human is known as A. Homeostasis - C. Osmoregulation - B. Thermoregulation - D. Poikilotherms 18. What does glucagon promote in the liver? - A. Hydrolysis of glycogen - C. Glycogen production - B. Hydrolysis of glucose - D. Release of insulin 19. What is the reason why smaller mammals have higher metabolic rates? - A. Higher SA: V ratios - C. Lower Lifespans - B. Lower SA: V ratios - D. More Frequent Exposure to Predators 20. What happens when blood sugar levels become too high? - A. Insulin is secreted, causing the conversion of glucose to glycogen - B. Glucagon is secreted, causing the conversion of glucose to glycogen - C. Insulin is secreted, causing the conversion of glycogen to glucose - D. All of the above 21. Why do the hairs on our skin sometimes stand up when we are cold? - A. to know when we are frightened - B. to trap air under them in order to keep us warmer - C. to release air order to cool us down - D. to trap air under them to keep us cooler 22. What happens if the core body temperature is too high? - A. the blood vessels supplying the capillaries constrict - B. the body decreases sweating - C. the blood vessels supplying the capillaries dilate - D. the body shivers to produce heat - 23. When an animal is placed in a hot environment, it loses heat through sweating whereas when to cold environment, it increases muscular activity to produce more heat. The animal in this thought is: BIOLOGY GRADE 11 71 FDRE-Moe ETHIOPIA A. Homeothermic C. Ectothermic B. Poikilothermic D. None of these 24. An increase in blood sugar level causes the pancreas to release of the hormone insulin; insulin lowers blood sugar level, restoring the body to its original blood glucose level by converting glucose to glycogen. This is an example of A. Positive feedback C. Homeostatic imbalance B. Negative feedback D. None of these #### **Short answer** **Direction:** Write a short answer to each question - 1. How does reproduction differ in rats, birds and crocodilians? - 2. What is the difference between vertebrates and invertebrates - 3. What is the difference between poikilothermic and homoeothermic animals? - 4. Explain why mammals living in the tropics as compared to similar species living in the polar regions have generally large protruding structures? - 5. How surface area to volume ratio is related with temperature regulation and metabolism? ## **Unit Three: Enzymes** **BIOLOGY GRADE 11 UNIT THREE ENZYMES** # Unit learning outcomes After the successful completion of this unit, the student will be able to: Explain enzymes; their properties, factors affecting their activities, functions, mechanisms of action, regulation, their industrial applications and kinetics Demonstrate proteins and their structures ### 3.1. What are enzymes? At the end of this section, students will be able to: - Define enzymes and activation energy - Explain how enzymes work - Describe the catalysis reaction of enzymes, activities and substrates #### Self-questioning Before starting this section, ask yourself this question: "What do I know about enzymes, their properties and functions, and what do I want to learn from this section?" Enzymes are protein molecules that act as biological catalysts (biocatalysts) and accelerate rate of
chemical reactions by lowering activation energy. Activation energy is the minimum amount of energy required for the reactant to be converted to products. All enzymes are proteins made up of chains of amino acids linked together by **peptide** bonds. All cells contain different enzymes depending on the type of the living cell, which engage in tremendous biochemical activity called metabolism. Metabolism is the process of chemical and physical changes, including the breakdown (catabolism) and synthesis (anabolism) of molecules. The metabolic processes in the cells require enzymes to catalyze many biochemical reaction types at a rates fast enough to sustain life. Enzymes act upon molecules (substrates), convert them into products of different molecules, and remain unchanged (Figure 3.1). Figure 3.1 Enzymatic reactions #### Lab activity 3.1 Classroom experimental activities Objectives: investigate the enzyme **Salivary Amylase i**n mouth Material White bread #### Procedure - 1. Pieces of bread are prepared for each student who will chew. - 2. All students chew the pieces of bread in mouth slowly. - 3. Each student notices the changing flavor of the mush in his/her mouth while chewing. - 4. Each student realizes that the mush in the mouth slowly tastes sweeter. #### Control experiment: - Mix some pieces of bread in a glass of water and wait for five minutes - Let the students taste the mush (water + bread) and compare with flavor of mush of bread and saliva. - How is the taste? #### Assessments - What did you recognize from the changes in the mush? - How does the saliva convert starch into maltose? - Where did the enzyme amylase come from? - What do you conclude from the activity? ### 3.2 Properties and functions of enzymes After the successful completion of this section, the student will be able to: - Identify the properties of enzymes - Explain the action of each property - Describe the functions properties What are the enzyme properties? Enzyme properties are reactions demonstrated through physical and chemical properties. #### 3.2.1 General properties of an enzyme The general properties of enzymes are the nature of both their physical and chemical properties. Enzymes accelerate the reaction rates. They neither affect the nature of products formed nor undergo any changes by the reaction catalyzed. A. The physical properties of enzymes The physical properties of enzymes include denaturation, solubility, colloids, biocatalysts, precipitation, molecular weight, and enzyme activity (Figure 3.2). **Denaturation** is the process of breaking the intra and inter-molecular non-covalent bonds that distort the shape and active site of the enzymes. Enzymes are denatured by high heat (above 40°C), alternation in the pH (too low or too high), heavy metals and high salt concentrations, solvents and other reagents. **Solubility** is the property of enzymes that allow them to be dissolved in water, salt (NaCl), diluted glycerol and alcohol causing denaturation. Figure 3.2 Physical properties of Enzymes **The colloidal** nature of enzyme is the tendency of having little or no dialysis cross the semipermeable membrane due to the large size or high molecular weight. **The biocatalyst property** is the activity of enzymes in which very small quantities or a small amount of enzyme is enough to convert a large quantity of substrate and remain unchanged after the reaction. **Enzyme precipitation** is the separation of enzymes for analysis using different aqueous or ethanol solvents. **Molecular weights** of enzymes are large protein biomolecules that hold polypeptide chains of various amino acid sequences in enzymes having a high molecular weight. **Enzymatic activity** is the general catalytic properties of an enzyme. It depends on factors such as temperature, pH, and enzyme concentration and substrate concentration. Enzymes show the highest activity at optimum temperature and pH that a low concentration of enzymes and substrates slows down the enzymatic reaction. #### B. Chemical properties of enzymes Enzyme chemical properties are sensitivity, regulations, specificity, catalysis and reversibility reactions (Figure 3.3). Enzyme Figure 3.3 Chemical properties of enzymes BIOLOGY GRADE 11 77 FDRE-MoE ETHIOPIA **Heat** and **PH Sensitivity** is an enzymatic reaction to heat (temperatures) and pH (acidity and basicity) activated at optimum levels. **Regulation** is the process of controlling the activity of enzymes by activator and inhibitor molecules. **Catalysis is the process** of the acceleration of a chemical reaction by a catalyst. Enzymes are biological catalysts that possess high catalytic efficiency. They can transform about 100-10,000 substrates per second. The reactions catalyzed by the enzymes show a 10³-10⁸ times faster reaction rate in comparison to the non-catalyzed reactions. **Reversibility** is the ability of enzymatic biomolecules to catalyze various metabolic (anabolic and catabolic) reactions. It is the reaction to synthesize (build up new molecules or products) and decompose (breaks down different products) in which enzymatic reactions catalyze biochemical reactions in both forward and reverse directions. What is enzyme specificity? **Enzyme specificity is** a property of the enzyme that describes how restrictive the enzyme is in its choice of substrate. A completely specific enzyme would have only one substrate. Specificity of enzymes: - **Bond specificity** is a relative specificity of enzymes, which indicates that enzymes are specific for a bond. - **Group specificity** is a structural specificity of enzymes, which describes that enzymes are specific for a group. - Substrate specificity is the feature of enzymatic activity where an enzyme acts only on a particular substrate. - Deptical specificity is when enzymes act on the substrate optical configuration. - **Co-factor specificity** is the enzymatic specificity to the substrate and co-factors. #### **Inquiry activity 3.2 Group discussion** Discuss the following properties of enzymes: • Differences in physical and chemical properties - Catalytic property - Specificity property - Reversibility property - PH sensitivity property - Heat sensitivity property #### 3.2.2 The function of enzymes Which enzymes convert carbohydrates, proteins, lipids and nucleotides into their monomers? Enzymes help speed up chemical reactions in the human body. They are essential for respiration, digesting food, the liver, muscle, and nerve function. Each cell in the human body contains thousands of enzymes that provide help in facilitating chemical reactions within each cell. The **turn over number** of molecules is the number of **substrates** converted by one enzyme molecule per second at saturated (fully occupied) active sites. Enzymes are markers of the states of various diseases like myocardial infraction, jaundice, pancreatitis, cancer and neurodegenerative disorders etc. Each enzyme has an **active site** with a unique shape that speeds up metabolism or chemical reactions in our bodies and builds substances in all living things. Examples of enzymes: - Sucrase breaks down a sugar called sucrose. - **Lactase** breaks down lactose, a kind of sugar found in milk products. - Carbohydrase breaks down carbohydrates into sugars. - Lipase breaks down fats into fatty acids. - Protease breaks down protein into amino acids Enzyme acting on a substrate to produce product releasing enzyme for further use through steps 1-4 (Figure 3.4). BIOLOGY GRADE 11 79 FDRE-MOE ETHIOPIA Figure 3.4 Enzyme functions Enzymes perform their function by lowering a reaction's **activation energy**. Activation energy is the energy required to start a reaction. The lower the activation energy, the faster a reaction happens (Figure 3.5). Figure 3.5 Enzymatic reactions between glucose and oxygen Table 3.1 Some of enzymes in the body and their functions | Enzyme | Function | |-----------------------|---| | Lipases | Split fats found in the blood, gastric juices, pancreatic secretions, intestinal juices, adipose (fatty) tissues and participate in digestions. | | Amylase | Amylase exists in saliva and helps in changing starches into sugars. | | Maltase | Maltase exists in foods such as potatoes, pasta and beer and saliva breaks the sugar maltose into glucose. | | Trypsin | Found in the small intestine, breaks proteins down into amino acids. | | Lactase | Found in the small intestine, breaks lactose, the sugar in milk, into glucose and galactose. | | Helicase | Unwinds DNA | | DNA Polymerase | An enzyme responsible for forming new copies of DNA in the form of nucleic acids molecules | | Acetyl cholinesterase | Breaks down the neurotransmitter acetylcholine in nerves and muscles | #### Lab-based activity 3.3 Experiment on the functions of enzymes **Objectives:** learning by doing Materials and chemicals Knife, Potatoes and Hydrogen peroxide #### Procedure - Cut potatoes into two slices. - Drop hydrogen peroxide on the potato slice and observe. - Students observe that it starts bubbling as a result of enzymatic reactions. #### Assessments - 1. What causes the bubbling in the potato slices? - 2. How does metabolic decomposition take place? - 3. Identify which one is the enzyme, substrate, and product. #### 3.3 Protein structures After the successful completion of this section, the student will be able to: - Explain the structure of proteins. - Determine the protein's primary, secondary, and tertiary structures. - List the levels of protein function #### Self-question arrangements of atoms in amino acid chain molecules. The protein Before starting this section, ask yourself this question: "What do I know about protein structure and what do I want to learn from this section?" You have learnt about proteins in grade ten. In the above sections, we have discussed that enzymes are
proteins. Proteins have different structures. Protein structure is a polymer of amino What is protein structure? acids joined by peptide bonds with three-dimensional complex macromolecules have four structural levels: - 1. Primary structure - 2. Secondary structure - 3. Tertiary structure - 4. Quaternary structure #### 1. The primary structure of proteins The primary structure of proteins makes up amino acid sequences based on the side-chain substituents that differ by the chemical, physical, and structural properties. It is the sequence of amino acids linked together to form a polypeptide chain through peptide bonds created during the protein biosynthesis process (Figure 3.6). Proteins with fewer than 50 sequences are **peptides**, and proteins with longer than 50 sequences of amino acids are **polypeptides**. Humans require 20 amino acids out of which 10 amino acids are synthesized in the human body, and the rest 10 amino acids are obtained from diets. Cells use 20 different standards of **L-a-amino acids** containing basic amino acids and acidic carboxyl groups for protein construction. Figure 3.6 Primary structures of proteins #### 2. The secondary structure of proteins The secondary structure of a protein is a folded structure formed within a polypeptide due to interactions between atoms of the backbone based on hydrogen bonding and containing **a-helix** and **B-sheet** types of strands. #### 2.1 The a - Helix The \mathbf{a} -helix is a right-handed coiled strand and the side-chain substituents of amino acid groups extend to the outside and form hydrogen bonds with oxygen (C=O) in the strand with the hydrogen of each (N-H) group of four amino acids to make the structure stable. **The a**—Helix structure is one of the most common ways in which a polypeptide chain forms all possible hydrogen bonds by twisting into a right-handed screw with the NH group of each amino acid residue hydrogen-bonded to the CO of the adjacent turn of the helix. #### 2.2 β-pleated sheet The hydrogen bonding in the ß-sheet is between the inter-strands and intra-strands in which the sheet conformation of the ß-sheet consists of pairs of strands lying side-by-side. All peptide chains stretch out to nearly maximum extension, laid side by side and held together by intermolecular hydrogen bonds forming pleated folds of drapery (Figure 3.7). Figure 3.7 Secondary structures of a proteins BIOLOGY GRADE 11 83 FDRE-MOE ETHIOPIA #### 3. The tertiary structure of proteins The tertiary protein structure is the three-dimensional shape of protein molecules that bend and twist to achieve the maximum stability or the lowest energy state. It is fashioned by many stabilizing forces due to the bonding interactions between the side-chain groups of amino acids (Figure 3.8). Figure 3.8 Tertiary structure of protein #### 4. The quaternary structure of proteins A protein quaternary structure is the arrangement of multiple folded protein subunits in a multi-subunit complex. It is the association of several protein chains or subunits into closely packed arrangements with their own primary, secondary, or tertiary structures and held together by the hydrogen bonds (Figure 3.9). Figure 3.9 Hemoglobin showing the quaternary structure Table 3.2 Summary on protein structures | Proteins | Structures | |------------|---| | Primary | The basic linear sequence level of amino acids comprising one polypeptide chain | | Secondary | The next level up of proteins with folding regions into the specific structural patterns within one polypeptide chain | | Tertiary | The next level up is the three-dimensional arrangement of all the amino acids in a single polypeptide chain. | | Quaternary | All polypeptide chains are held together by a specific spatial arrangement and interactions. | ## Inquiry based activity 3.4 Drawing a big protein structure #### poster #### **Learning by drawing** #### Procedure - 1. Draw a large poster of the primary, secondary, tertiary and quaternary protein structures and post it on the wall - 2. Discuss in groups of five students the poster and present to your class #### Assessments - 1. Describe the differences in protein structural levels - 2. What are the subunits of protein structures? - 3. How do protein subunits hold together? #### 3.4 Enzyme substrate models After the successful completion of this section, the student will be able to: - Identify enzyme substrate models - Explain the active site of enzymes #### **Self-questioning** Before starting this section, ask yourself this question: "What do I know about models of enzyme actions and what do I want to learn from this section?" Enzyme substrate models are models for enzyme substrate interaction describing that the shapes of the active site and the substrate complement to fit into the binding **active site** perfectly. #### 3.4.1 Enzyme-substrate binding models How do enzyme substrate models fit? There are two different of enzyme-substrate binding models that we will look at in this section: the lock and key model and the induced fit model. #### 1. Enzyme lock and key model The lock and key model is when enzyme active sites fill-in with a substrate to interact through **non-covalent** interactions. The model explains on how the enzymes must bind to substrates before they catalyze a chemical reaction. Once the reaction progresses to the transition state and forms products, the **active site** will not be able to accommodate changes (Figure 3.10). Figure 3.10 Lock and Key model #### 2. Enzyme induced fit model An enzyme induced fit model is the active site of an enzyme that elicits responses to the binding substrate by inducing the substrate to take up transition even when the **active site** is not perfect to perform the required product. Enzymes change shapes by induced fit upon substrate binding to form enzyme substrate complexes. The amino acid side chains that make up the active site mold into the precise positions enable the enzyme to perform its catalytic functions. The concept of induced fit states that when a substrate binds to an enzyme, it brings about a change in the shape of the enzyme, which either enhances or suppresses the activity of the enzyme. Upon binding, the inducing process enables to elicit required energy for the reaction to move by putting the active site under strain and making the transition stable (Figure 3.11). Figure 3.11 Induced fit enzyme model #### 3.4.2 Enzymatic transition state An enzymatic transition state is the reaction rates of elementary chemical reactions and assumes chemical equilibrium between reactants and activated transitions. It describes how the chemical reactions are taking place qualitatively in the activated enzyme-substrate complex of absolute reaction rates. The reactive state of substrate binding catalysis is corresponding to the maximum reaction activated and its state of transition (Figure 3.12). Where: E = Enzyme **S** = Substrate **ES** = Enzyme substrate combined **ES*=** Enzyme substrate complexes **EP**= Enzyme product, BIOLOGY GRADE 11 87 FDRE-Moe ETHIOPIA Figure 3.12 Enzymatic transitional states #### **Inquiry based activity 3.5 Practical activities** Learning enzyme-substrate models by doing - Construct the shapes of the enzyme "Lock and Key" and "Induced Fit" substrates. - Models from locally available materials and post them on the walls of your class. #### 3.5 Enzyme regulation After the successful completion of this section, the student will be able to: - Explain enzyme regulation - Distinguish activator and inhibitor enzymes - Describe substrate and bonding #### **Self-Questioning** Before starting this section, ask yourself this question: "What do I know about types of enzymes and how their action is regulated? What do I want to learn from this section?" Enzyme regulation is a control system for enzymatic activities in which enzymes are turned "on" or "off" depending on the organisms need. It is adapting enzymatic activities by other molecules or metabolic cells to either increase or decrease the activities. What are the enzyme regulations? A regulatory enzyme is the one in a biochemical pathway through which it responds to the presence of certain other biomolecules and regulates the pathway activity. It requires an extra activation process to pass through some modifications and functions. Regulatory enzymes are of two types, allosteric enzymes and covalently modulated enzymes, and we will look at these in more detail in this section. #### 1 Allosteric enzymes Allosteric enzymes are enzymes that have additional binding sites for effector molecules other than the active site that cause conformational changes, leading to changes of catalytic properties. Allosteric enzymes contain two binding sites called **active site/catalytic site** and **allosteric site/regulatory site** for binding effectors and substrates respectively. Effectors are small molecules (inhibitor or activator) modulating the enzyme activity and function through reversible non-covalent binding of a regulatory metabolite in the allosteric site or non-active site. Effectors lead to conformational changes in a concrete part of the enzyme that affect the overall conformation of the active site, causing modifications in the activity of the reaction. Figure 3.13 Allosteric enzyme #### 2. Genetic and covalent modification The genetic and covalent modification modifies the protein surface and facilitates intracellular delivery. Genetic modification of enzymes is to improve the properties of enzymes and gain active and inactive forms. Covalent modulated enzymes are active and inactive forms of the enzymes altered due to covalent modification of structures catalyzed by other enzymes. Covalent modifications are enzyme-catalyzed alterations of synthesized proteins by the addition or removal of chemical groups. Modifications can target a single type
of amino acid or multiple amino acids and will change the chemical properties of the site. Enzyme regulation occurs by the addition or elimination of some molecules attaching to the enzyme protein. Examples: BIOLOGY GRADE 11 89 FDRE-MOE ETHIOPIA **Phosphorylation** is the addition of phosphate groups to proteins. It is the most frequent regulatory modification mechanism in our cells (Figure 3.14). Figure 3.14 Enzyme phosphorylation #### 3. Enzyme inhibition Enzyme inhibition is a decrease in enzyme activity by enzyme inhibitors. Enzyme inhibitors are molecule that binds to an enzyme and blocks its activity. There are two types. These are reversible inhibitors and irreversible inhibitors (Figure 3.15). **Irreversible inhibitor:** is a substance that permanently blocks the action of an enzyme. **Reversible inhibitor**: inactivates an enzyme through noncovalent easily reversed interactions. Reversible inhibitors can be competitive and uncompetitive. Figure 3.15 Enzyme inhibition **1. Competitive inhibitor** is a molecule that blocks the binding of the substrate to the active site (Figure 3.16). #### Figure 3.16 Competitive inhibition - 2. **Noncompetitive inhibitor** binds to the enzyme already bound the substrate and decreases the efficacy of the enzyme. - 3. **Uncompetitive inhibitor** binds only to the enzyme substrate complex, but not to the free enzyme. It occurs in reactions with two or more substrates or products and slows enzyme reactions by binding the substrate to each other (Figure 314). # Inquiry based activity 3.6 Discuss in pairs and present to the class Learning enzymes through discussions - 1. Enzyme active site, passive site, allosteric site - 2. Enzyme activators - 3. Enzyme inhibitors - 4. Binding and blocking of molecules ### 3.6 Types of enzymes After the successful completion of this section, the student will be able to: - List types enzymes - Describe the function of each type of enzyme - Define activities of each type of enzyme Enzymes that catalyze chemical reactions can be classified into various types. Enzyme types are based on how enzymes that bind specific molecules together to form new molecules and enzymes that break specific molecules apart into separate molecules. BIOLOGY GRADE 11 91 FDRE-MOE ETHIOPIA #### 3.6.1 Enzyme structural classification The structural classification of enzymes deals with the separation of an enzyme into **simple proteins** (active) and conjugated proteins (holoenzymes). Then, the conjugated protein part (holoenzyme) is divided into the non-protein part (**cofactor**) and the protein part (**apoenzyme: inactive**) groups. How do you classify enzymes? Finally, the non-protein part (cofactor) separates into the firmly attached metal ion **(prosthetic group)** and the loosely attached vitamin B complex (coenzyme) groups (Figure 3.17). Figure 3.17 Structural classifications of enzymes #### 3.6.2 Basic classification of enzymes Enzymes are composed of six classes based on what and how they react, the types of reactions they catalyzed, and the end suffix "-ase". The followings are basic classes of enzymes. 1. Oxidoreductases are a class of enzyme that catalyzes oxido-reduction reactions. It catalyzes the transfer of electrons from one molecule (oxidant) to other molecule (reductant) reactions in the following pattern: A⁻ + B → A + B⁻ where A is the oxidant and B is the reductant. **2. Transferase** is an enzyme that transfers functional groups like methyl from one donor molecule to acceptor molecule. - **3. Hydrolases** are enzymes that catalyze the hydrolysis of various bonds. - **4. Lyases** are enzymes that cleave bonds by other means rather than hydrolysis or oxidation in which two or more substrates are involved in one reaction. - **5. Isomerases** are a general class of enzymes that convert molecules from one isomer to another isomer. - **6. Ligases** are enzymes that catalyze the joining of two molecules with concomitant hydrolysis of the di-phosphate bond in **ATP.** #### Lab activity 3.7: tests for enzyme reactions **Objectives:** test the reaction of enzymes in apples **Materials:** an apple or banana fruits and a knife #### **Procedures:** - Cut an apple into two slices and wait for about 10 minutes and observe - Observe until it turns into brownish showing pigmentations #### **Control experiment:** - Cover the other half cut slice of the apple by plastic sheet immediately - Compare the color change of covered apple slice with the exposed one - Does the covered slice change its color? #### **Assessments:** - 1. What gives it the brownish color? - 2. What is enzyme catalyzing? - 3. What is the name of the enzyme found in apples? - 4. Why the covered slice did not change pigments? - 5. What is the difference between the covered and exposed apple slices? BIOLOGY GRADE 11 93 FDRE-MOE ETHIOPIA #### 3.7 Factors affecting enzyme action After the successful completion of this section, student will be able to: - List factors affecting enzyme actions - Describe how each factor affects enzyme action - Discuss on how to optimize the factors Self-Questioning Before starting this section, ask yourself this question: "What do I know about factors that affect enzyme actions, enzyme kinetics, enzyme application, and what do I want to learn from this section?" What are the factors that affect enzyme action and how? Enzymes work best within specific temperature and pH ranges and at optimal conditions (the condition under which particular enzyme is most active), an increase or decrease in the conditions of these factors affects the functions of enzymes. There are varieties of factors that affect the activity of enzymes: temperature, pH, inhibitors, activators, radiation, water, enzyme, substrate, and end-product concentrations (Figure 3.18). Figure 3.18 Factors affecting enzymes' activity #### 3.7.1 Description on factors affecting enzymatic actions **Temperature:** while all enzymes work best within the specific ranges of optimum temperatures, low or high temperature causes an enzyme to lose its activity and ability to bind a substrate and denatured. Once enzymes denatured, they cannot be renatured. Figure 3.19 Enzyme reactions to temperature 1. **PH:** enzymes function at optimum pH (the potential of hydrogen ions) that ranges from too low (strong acid) to too high (too alkaline) pH. Such extreme temperatures cause an enzyme to lose its ability to bind into a substrate. Figure 3.20 Enzyme reactions and pH **Substrate concentrations:** enzymes require a maximum limit of substrate concentration to bind. - 1. **Radiation** damages enzyme activities by reducing in enzymatic efficiency and creating disorders in the macromolecules. - 2. **Water:** affects the performance of enzymes' activity beyond its optimum level. - 3. **End product (Feedback) inhibition** is a cellular control mechanism in that the end product inhibit enzyme's activity. In feedback inhibition, the endproduct binds to the allosteric site of the enzyme and change the structure of the active site. This prevents the BIOLOGY GRADE 11 95 FDRE-MOE ETHIOPIA enzyme to perform its activity. Due to feedback inhibition, a cell is able to know whether the amount of a product is enough for its subsistence or not. Figure 3.21 Feedback inhibition **Example:** The drug Tipranivir used to treat HIV blocks the activity of a viral genome enzyme to make more copies as a reversible inhibitor. #### Lab activity 3.8: tests for the functions of enzymes Objectives: test for enzyme sensitivity to heat Materials: hydrogen peroxide (H2O2), Potatoes, a knife and cooking utensils #### Procedure: - Take two slices of potatoes, boil hard one slice and leave raw the other one - Drop hydrogen peroxide on boiled and raw potato slices - Observe and compare the enzyme reactions of both potato slices Assessments: - 1. Identify reaction differences between the boiled and raw potato slices - 2. In which of the potato slices is, enzymes denatured? - 3. Did high temperature affect the activity of enzymes? #### 3.8 Enzyme kinetics After the successful completion of this section, students will be able to: - Explain enzyme kinetics - Describe the steps enzyme kinetic - How enzyme kinetics works? How do you measure the enzymatic rates of reactions? Enzyme kinetics describes the rates of chemical reactions that are catalyzed by enzymes and the binding affinities of substrates, inhibitors and the maximal catalytic rates achieved. Enzyme kinetics explains that enzymes speed up reactions by lowering the activation energy of the reactants and turning them into products. Hence, the concentration of enzyme and substrates determines the rate of the reactions or production volumes per unit time. One of the most known models of **enzyme kinetics** is the **Michaelis-Menten** formula that takes a form of **equation** describing the rate of enzymatic reaction by relating the reaction rate, rate of formation of product to the concentration of substrate. The model explains the relationship between the rate of an enzyme-catalyzed reaction $[V_1]$, the concentration of substrate [S] and two constants, V_{max} and K_m with the following equation. $$v_1 = \frac{V_{max}[S]}{\{K_m + [S]\}}$$ Where: V_1 = the initial velocity/rate reaction V_{max} = the maximal velocity/maximum rate of reaction **[S]** = the substrate concentration K_M = substrate concentration at half-maximal velocity (Michaelis constant). Figure 3.22 Enzyme kinetics as a function of concentration #### Inquiry activity 3.9 investigating effect of inhibitors Be in groups and find what happens to the rate of reactions and the graph in the presence of inhibitors (competitive and non-competitive inhibitors) from the library or the internet, discuss and present it in class. BIOLOGY GRADE 11 97 FDRE-MOE ETHIOPIA ## Lab-based activity 3.10 Experiment on enzyme reaction rates Objectives: test for enzyme reactions **Materials:** beef liver, Potato, Carrot, 3 Test tubes, H₂O₂ and Knife ####
Procedures: - Label the test tubes as **A** for beef liver, **B** for potato **C** for Carrot - Chop the beef liver, potato and carrot into small pieces and put the chopped sample of beef liver in (A), Potato in (B) and in Carrot (C) test the tubes - Add about 2ml of hydrogen peroxide to each test tube equally ml) - Observe the rate of enzyme kinetic reactions of each test tube and measure the height of bubbles and speeds (time rate) #### Assessments: - 1. What were the reaction rates in test tubes A, B, and C? - 2. Which of the reaction was the fastest? - 3. Why was the reaction in A the highest? #### Application of enzymes in industries and their benefits After the successful completion of this section, the student will be able to: - Explain applications of enzymes - List areas of enzyme applications - Identify and discuss locally applied enzymes What are the uses of enzymes? Application of enzymes is the use of enzymatic biochemical reactions for chemical conversion process that are driving forces of great change for productivity of various industries. Enzyme protein catalytic activity is efficient enough (100s to 1000s) of times higher than that of inorganic catalyst. BIOLOGY GRADE 11 UNIT 3: ENZYMES ### 3.9.1 Uses of enzyme application The application of enzymes are widely used in food, feed, textile, papermaking, leather and detergents, pharmaceutical and other industrial productions. ### Examples: - 1. Enzymes break down larger complex molecules into simpler molecules in our body where they can be used to fuel our digestive systems and cellular respirations. - 2. Most enzymes used for food industry were extracted from the internal organs of animals and plants, but now most enzymes are obtained by microbial fermentation. - 3. Enzymes cause billions of chemical reactions to happen at lightning speed inside the cells of our body. - 4. Enzymes improve the utilization of feed rate of starch, protein, and minerals and degrade the anti-nutritional factors in animal feed, prevent animal indigestion and improve feed digestibility. - 5. In the pharmaceutical industry, enzymes are used in drugs, antibiotics, household products to speed up chemical reactions and synthesis. - 6. Enzymes are powerful tools in sustaining a clean environment in several ways. - 7. Washing powders are enzymes used to break down protein, starch and fat stains on clothes Table 3.3 the applications and functions of enzymes | Cellulases | Biofuel industry | Breakdown cellulose into sugars and ferment to produce cellulosic ethanol | | |--|---|--|--| | Ligninase | Biofuel industry | Pre-treatment of biomass for biofuel production | | | Amylase, Lipase detergent removes starch, and lipase remov | | Protease removes protein, amylase removes starch, and lipase removes fat or oil stains from laundry and dishware | | | Mannanase | Biological
detergent | Remove food stains from the common food additive guar gum | | | Betaglucanase Brewing indu | | Improve beer filtration | | | Papain | Culinary uses | ry uses Tenderize meat for cooking | | | Rennin | Rennin Dairy industry It hydrolyses protein in the manufa of cheese | | | | Trypsin | Food processing | Manufacture hypo-allergenic baby foods | | | Cellulases,
Pectinase | Food processing | Clarify fruit juices. | | | Nuclease, DNA
Ligase,
Polymerase | Molecular biology | Uses restriction digestion and polymerase chain reaction to create recombinant DNA | | BIOLOGY GRADE 11 99 FDRE-MOE ETHIOPIA | | | _ | |----|-----|-----| | å. | 10 | | | - | 100 | 4.0 | | ш. | W. | 7 | ### **Activity 3.11: Discussion** Discuss the applications and uses of enzymes and fill-in the table | Enzymes | Enzymes and substrates | Potential application | |-------------|------------------------|-----------------------| | Arginase | | | | Ligninase | | | | Lipase | | | | Mannaninase | | | | Papain | | | | Proteinase | | | ### 3.10 Malting in Ethiopian tradition After the successful completion of this section, the student will be able to: - Explain the what and why of malting for alcohol drinks - List some of the locally prepared types of malting - Define the nature and function of malting for alcoholic production How do you make malt? Malting (sprouting) is a widely applied traditional technology. It is the process of steeping, germinating and drying grain to convert it into malt. Malting is the limited controlled germination of grains in moist air, which results in the mobilization of amylases, proteases and other enzymes that hydrolyze and modify the grain components and its structure. BIOLOGY GRADE 11 UNIT 3: ENZYMES ### 3.10.1 Steps of modern malting There are three steps to modern malting, steeping, germinating and kilning, and these will be discussed in this section. ### 1. Steeping Steeping is the process of cleaning the grain kernels and bringing it to life with water and oxygen by immersing it in the water and air for a specified time period. The water activates naturally the existing enzymes in grains and stimulates the production of enzymes in which water temperature and aeration are vital for producing high quality malt. Although the process can vary depending on the grain type and size, malting occurs over a period of 24–48 hours. The **steeping** will be complete when the barley has reached a sufficient moisture level to allow a uniform breakdown of starches and proteins. So starch and protein hydrolyzing enzymes are activated during steeping ### 2. Germinating Germinating is to continue the process with the growth and modification of the grain. Rootlets emerge from the kernel to the outside of the grain and within the outer husk and a shoot or acrospires grows. Modification is the breakdown of protein and carbohydrates, resulting in the opening up of the seeds' starch reserves within four to six days as **Green Malt**. The control of temperature and moisture levels with regulated airflow and the uniformity of water spray enables achieve a high quality and consistent germination process. Malting is partly an art and partly a science that can be gauged in the degree of modification with the eyes, sense of smell and hands. ### 3. Kilning (Heating) Kilning is the heating treatment of germinated grain to dry the green malt and prevent from further germination. If germination continued, the kernel would keep growing and the growing plant would use all of the starch reserves needed by the brewer. Removing moisture from the germinated grain is initially for **withering**. Additional drying further reduces the moisture content and prepares the malt for flavor and color development. The kilning process achieves enzymatic activity and friability, a wide ranges of malt colors and flavors and distinctive ales and lagers. ### 3.10.2 Why is malting for? Malting aims to convert or modify the physical structure of the barley grain and allow synthesis or activation of a series of enzymes to produce malt for uses in the subsequent purposes (brewing, distilling or food production). BIOLOGY GRADE 11 101 FDRE-MOE ETHIOPIA Barley is the most common cereal used for the production of malt because of its high starch-to-protein ratio and adhering husk that contribute to the economic yield, ease of processing and production. Barley malting in Ethiopia is practiced for the production of traditional beer (Tella) and uses as in ingredient in porridge making or drinks. The most common enzymes used in the malting process are **beta-glucanase**, **alpha-** **amylase, protease** (breaks down proteins) and **beta-amylase**. The main purpose of malting is to produce enzymes such as the a-amylase and Bamylase useful for modifying and converting grains' starches into simple sugar (monosaccharide), complex sugar (disaccharides) and malt sugar (maltose) and higher sugars called **maltodextrines**. Then after, the yeast uses these monosaccharides produce alcohol by alcoholic fermentation. ### 3.10.3 Traditional malting for local alcohol production How do people produce malt? Traditional malting is the process of sprouting barley grains for the production of enzymes (α -amylase and β -amylase) to process fermentation drinks such as Tella. The steps of traditional malting process include: - 1. Soaking barley grains (steeping) - 2. Germinating (sprouting) - 3. Kilning (Heating) the malt The most commonly used grains for malting are barley, maize, millet, sorghum and the like. However, barley is the most preferable grain to produce local drinks in local malting (Figure 3.23). Figure 3.23 Malted barley The main purpose of malt production is to produce alcoholic beverages drinks for consumptions and income generation to support the livelihood of the people. Malting requires raw materials like barley for fermentation of alcoholic drinks like Tella. BIOLOGY GRADE 11 UNIT 3: ENZYMES People in Ethiopia produces local drinks like Booka, Cheka, Keribo, Korefe, Shameta, Borde and Teji in different occasions (holidays, wedding ceremonies, and celebrations). Do people in your area use malting to produce such types of local drinks? # Inquiry based activity 3.12 Malting practices in the classroom with groups of five students Exercise malting practices Materials Barley seeds and Water #### **Procedure** - Make a malt of barley seeds - Present the steps of malting to the class #### **Assessment** - 1. What happened to the barley seeds? - 2. How did you halt the malt's from further sprouting? - 3. What is the purposes of malting? ### 3.11 Renowned Biochemists in Ethiopia After the successful completion of this section, students will be able to: - Explain what a biochemist is - Describe the work of a biochemist - List renowned Ethiopian biochemists A biochemist is a scientist who studies the chemical processes
transformations in living organisms including DNA, proteins and cell parts. A biochemist also conducts research on how certain chemical reactions happen in cells, tissues and organisms and record the effects of products in food additive and medicines. BIOLOGY GRADE 11 103 FDRE-MOE ETHIOPIA The study of biochemistry deals with all aspects of the immune systems, expressions of genes, isolation, analysis and synthesis of products. It also concerned with studying mutations that leads to cancers, scientific procedures used to manage and monitor laboratory works. Biochemists also conduct research in the field of agriculture, in the interactions between herbicides with plants. They also examine the relationships between or among compounds that determine the ability to inhibit growth and evaluate the toxicological effects. ### Inquiry based activity 3.13 Group discussion - List any renowned biochemists you know with pertinent biography - Discuss the roles of biochemists in research and take notes ### **Unit three summary** Enzymes are protein biochemical catalysts that speed up chemical reactions to keep up metabolisms without affecting the products and the nature of the catalyst itself. An enzyme is a substance that acts as a catalyst in living organisms, regulating the rate at chemical reactions and proceeds unaffected in the process. Enzyme **active site** increase reaction rates by lowering energy activations. However, some enzyme reactions convert substrates to products in millions of times faster speeds. In contrast, enzymes are inactive, destroyed or denatured at very low and higher temperature and PH. Enzyme substrate complex is a temporary molecule formed in perfect contact of enzymes with binding substrate **active sites** to converts into products. Substrate concentrations, enzyme concentrations and inhibitors are also factors affecting the properties enzymes. Many enzymes require cofactors (coenzyme) to become complex holoenzyme with apoenzyme before exerting catalytic activities (apoenzyme + coenzyme = holoenzyme). **Cofactors** are non-protein molecules that make enzymes active on binding to none-proteins. Enzymes require dietary minerals, vitamins and cofactors to function, make products that act as the substrate for the next side-product and remove wastes from cells. The entire active complex of an enzyme is a **holoenzyme** made up of apoenzyme (protein portions), coenzyme (cofactor) and prosthetic groups of metal-ion activators. BIOLOGY GRADE 11 UNIT 3: ENZYMES Most enzymes are proteins and not all proteins are enzymes whereby the non-protein parts attached to the protein as apoenzyme (cofactors). Molecules that increase the activity of enzymes are **activators** and molecules that decrease the activity of enzymes are **inhibitors**. Both **activators** and **inhibitors** of enzymes are molecules that turn up or down the activity of enzymes by binding with molecules of enzymes. Regulatory enzymes exist at high concentrations and their activity increases or decreases depending on changes in substrate **concentrations**. ### **Unit three review questions** #### Part I. True or false items **Instructions:** write true if the statement is correct and false if the statement is not correct. - 1. Enzymes are biocatalyst proteins. - 2. The rate of enzymatic reaction increases with increased rate of substrate concentration. - 3. Inhibitor is a molecule that reduces the rate of enzyme-catalyzed reactions. - 4. If you drop H₂O₂ on slice of boiled potato, enzymatic reactions are very active. - 5. The suffix "ase" indicates that a molecule is an enzyme. - 6. All enzymes are protein molecules, but not all proteins are enzymes. - 7. Our saliva contains an enzyme amylase. - 8. Enzymes can react beyond the optimum pH. - 9. Activators are molecules that increase the activity of enzymes. - 10. Enzymes are drugs in the pharmaceutical industry. ### Part II. Multiple-choice test Items **Instructions:** Choose the correct answer from the given alternatives. 1. What is the optimum temperature of enzyme activity in human body? A. 5 - 30 °C C. 25 - 45 B. 35 - 75 °C D. 37 °C 2. What is the first discovered enzyme? A. Lactase C. Diastase B. Ligases D. Hydrolase 3. An enzyme acts best at a particular pH called A. Catalytic pH C. Optimum pH B. Abnormal pH D. None BIOLOGY GRADE 11 105 FDRE-Moe ethiopia | 4. The | two enzyme specificity models are | | |--------|--|------------| | Α. | Lock and Key | C. A and B | | B. | Induced fit model | D. All | | 5. Whi | ch of the following statement is incorrect | :t? | A. Enzymes are protein in nature C. Enzymes are thermo-labile B. Enzymes is colloidal in nature D. Enzymes are inorganic catalyst 6. What is enzyme kinetics? A. The rate of reaction C. Acidic reactions B. Base reactions D. Heat reaction 7. What is the molecular weight of enzymes? A. Large protein biomolecules C. A and B B. 200 to 300 peptide bonds D. all 8. Enzymes that have additional binding sites A. Allosteric enzymes C. Transition state B. Enzyme rates D. None 9. Enzyme activity is dependent on A. The folding of a proteins C. Sensitivity to the pH and salt concentration B. Sensitivity to the temperature D. All 10. What is the formula for the rate enzyme kinetic mechanism? A. $S \rightleftharpoons ES \rightleftharpoons ES^* \rightleftharpoons EP \rightleftarrows E + P$ C. S ≠ ES ≠ ES ≠ EP ≠ E + P B. $S + ES \rightleftharpoons ES^* \rightleftharpoons EP \rightleftharpoons E + P$ D. S ≥ ES ≥ ES* ≥ EP ≥ P 11. The three steps of malting are A. Germinating, Steeping and Kilning C. Steeping, Germinating and Kilning B. Kilning, Germinating and Steeping D. None of the steps is correct 12. An enzyme that carries and transfers methyl groups from one compound donor (Cofactor) to another compound (acceptor) is A. Transferase C. Isomerases B. Lyases D. Translocases ### **Part III. Short answers** **Instruction:** give short answer for the following questions 1. What are the five types of enzymes and their applications (uses). 2. How does the function of the active site of an enzyme differ from that of an allosteric site? ## **Unit Four: Genetics** ### **Unit learning outcomes** After the successful completion of this unit, the student will be able to: - 1. Describe terms in Genetics - 2. Describe Cell division - 3. Explain Functions of DNA and RNA - 4. Differentiate Mendelian and non-Mendelian inheritances - 5. Complete Punnett Squares of monohybrid and dihybrid crosses - 6. Calculate the probabilities of offspring - 7. Design a test-cross to identify homogeneity and heterogeneity of unknown genotypes - 8. Describe Genetic disorders, Genetic testing, counseling, and Gene therapy - 9. Investigate how Ethiopian farmers select and breed quality plants and animals ### 4.1. The genetic materials After the successful completion of this section, the student will be able to: - Define genetics, genes, chromosomes, DNA, and RNA. - Describe DNA and RNA ### **Self-questioning** Before starting this section, ask yourself this question: "What do / know about genetic material and what do I want to learn from this section?" Look at your family, your classmates, and the peoples in your surroundings. Are all the people the same? Are all your classmates the same? Are all members of your family the same or different? If not, what do you think is the reason behind it? If your answer is yes and you think it is due to the genetic material, you are right. Recall your learning from the previous grade, grade 10 (Biochemical molecules) about the definition of genetics, the structure and function of DNA and RNA. - What are DNA and RNA? - How do they work in transmitting genetic material from parents to offspring? The branch of biology concerned with the study of the genetic materials of organisms and how traits are passed from one generation to the next generation through genes is called **genetics**. The genetic material of an organism refers to material that carry genetic information and passes it from one generation to the next generation to perpetuate life. The genetic material in almost all organisms is DNA. RNA is also a genetic material in some viruses like HIV, COVID-19. DNA (deoxyribonucleic acid) is the hereditary material in humans and other organisms. It exists in a double helix formed by base pairs attached to a sugar-phosphate backbone. RNA (ribonucleic acid) serves as the genetic codes ### Inquiry activity 4.1 Studying DNA If all organisms are made of DNA, why do they differ? Be in a group, search the library and the internet for DNA, discuss and present your findings to the class. in some viruses. It is involved in protein synthesis in cells. ### 4.2. The structure and function of DNA and RNA After the successful completion of this section, the student will be able to: - Describe the structures of DNA and RNA. - Draw and label the structures of DNA and RNA. - Describe the process of DNA replication. - Explain the functions of DNA and RNA. - Compare DNA with RNA with respect to structure and function. Before starting this section, ask yourself this question: "What do I know about the structure and functions of DNA and RNA and what do I want to learn from this section?" Both DNA and RNA have their own structures and important role in determining the characteristics of organisms. ### 4.2.1. The Structure and function of DNA #### The structure of DNA What is DNA made of? What is its functions? The structure of DNA is a ladder-like double helix twisted into a spiral shape, in which the sugar and phosphate groups form the two vertical ladder and the **BIOLOGY GRADE 11** FDRE-MoE ETHIOPIA nitrogenous bases form the ladder's rungs (Figure 4.3). It consists of two long chains of chemicals called polynucleotide (Figure 4.1) that twist around each other to form a double helix. Nucleotides are the basic building blocks of a DNA molecule. Figure 4.1 The structures of a single nucleotide Each nucleotide is composed of a
sugar, phosphate group and a nitrogenous base. There are four types of nitrogenous bases (Figure 4.2). These are: **Adenine (A)**, **Thymine (T)**, **Guanine (G)** and **Cytosine (C)**. The nitrogen bases belong to the two large chemical families called purine and pyramidine. The A and G are purines and the C and T are pyrimidines. A pairs with T and C pairs with G to form units called base pairs. Each base is also attached to a sugar molecule and a phosphate molecule to form a nucleotide, the building blocks of the DNA called nucleotide. Figure 4.2 Structures of purine and pyrimidine In the DNA structure, the sugar (Deoxyribose) and phosphate form the backbone of the DNA molecule and the nitrogenous bases form hydrogen bonds between the two strands (backbone), to form a ladder-like structure. Each strand of DNA shows polarity (two ends are different). The one is referred as 5' end and the other is 3' end. The two strands of DNA run in opposite directions. The strands are helically twisted where each strand forms a right-handed coil. James Watson and Francis Crick discovered the double helix structure of a DNA molecule. The following diagram explains the DNA structure that represents its different parts (Figure 4.3). BIOLOGY GRADE 11 111 FDRE-MOE ETHIOPIA Figure 4.3 DNA Structure #### **Genes and chromosomes** What is the difference between gene, chromosome and DNA? **4** ### **Activity 4.2 Studying chromosomes** Be in a group and - 1. Discuss the structure and functions of chromosome - 2. Draw and label the structure of a chromosome Sections of the DNA structure that contain the set of instructions that determine the characteristics of an organism are called genes. Genes are the basic structural and functional units of inheritance in nature. Genes pass from parents to offspring during both sexual and asexual reproduction through cell division. Genes are located on chromosomes. Chromosomes are threadlike structures made of a protein called histone and DNA molecule (Figure 4.4). Each chromosome may contain hundreds to thousands of genes that are arranged linearly along the length of each chromosome (like beads on a string), with each gene having its own unique position on to chromosomes called locus / loci (plural). Figure 4.4 Chromosome with DNA structure, histone protein and gene Chromosomes exist in pair in diploid organisms in which one chromosome is always inherited from the mother and the other from the father. For example a human cell contains 46 chromosomes which exist in 23 pairs of chromosomes (Figure 4.5). Figure 4.5. Human Karyotype, male and female ### The Function of DNA The function of DNA is to store all of the genetic information that an organism needs to grow, develop, reproduce, control the cell and survive. While DNA determines the characteristics of an organism, it is also responsible for carrying and transmitting the hereditary materials or the genetic BIOLOGY GRADE 11 113 FDRE-MOE ETHIOPIA instructions from parents to the offspring. The transmission of this information from the mother to daughter cells occurs through the process of DNA replication during cell division. ### 4.2.3 DNA replication How does DNA replicates? DNA replication is the process by which DNA makes a copy of itself during cell division. DNA has a unique property of replication or production of carbon copies. This is essential for transfer of genetic information from one cell to its daughters and from one generation to the next. DNA gives rise to RNAs through the process of transcription. DNA replication is a **semiconservative**, which means that each strand in the DNA double helix acts as a template for the synthesis of a new, complementary strand. In other words, the two original DNA strands separate during replication; each strand then serves as a template for a new DNA strand. Each newly synthesized double helix is a combination of one old and one new DNA strand (Figure 4.6). DNA replication involves the following enzymes. Table 4.1 Enzymes and their functions | No | Enzymes | Function | | |----|----------------|--|--| | 1 | DNA Helicases | It binds to the double stranded DNA and stimulates the separation of the two strands. | | | 2 | DNA polymerase | It adds new nucleotides to a growing strand of DNA, and links together, or polymerizes, DNA bases in the correct sequence using the template DNA strand. | | | 3 | RNA primase | It synthesizes RNA primers complementary to the DNA strand. | | | 4 | DNA ligase | links two fragments of DNA by forming a phosphodiester bond. | | | 5 | Topoisomerase | It prevents super coiling at the region ahead of the replication fork. | | **Replication fork:** A structure that forms within the long helical DNA during DNA replication is called replication fork. It is the point formed due to unwinding and separations of two strands appear like Y —shaped fork is called replicating fork. **Leading strand**: the strand of new DNA, which is synthesized in the same direction as the growing replication fork. **Lagging strand**- the strand of new DNA whose direction of synthesis is opposite to the direction of the growing replication fork There are three stages in DNA replication. These are: **Stage one** - the DNA helix structure is unwound and unzipped, hydrogen bonds between bases, which are holding the two strands together break and the double helix structure of the DNA molecule separate in to two strands. **Stage two** - The two separated strands will act as templates for making the new strands of DNA. DNA polymerase will add the free DNA nucleotides using complementary base pairing (A-T and C-G). One of the strands is synthesized in the same direction as the growing replication fork (leading strand). DNA polymerase adds nucleotides to the deoxyribose (3') ended strand in a 5' to 3' direction. The other strand synthesizes opposite to the direction of the growing replication fork (lagging strand). **Stage three**- The two new strands twist to form a double helix. Each is identical to the original strand. Figure 4.6 DNA replication BIOLOGY GRADE 11 115 FDRE-MOE ETHIOPIA ### Lab Activity 4.3 Extracting DNA Conduct an experiment to extract DNA from a banana fruit. Objective: observing DNA Extracting DNA from a banana fruit may sound like a difficult task, but it is not very difficult at all. The process involves a few general steps, including mashing, filtration, precipitation, and extraction. Materials— Banana, Salt, Warm water, Liquid soap, Blender, Toothpicks, Strainer, Glass jar, Rubbing alcohol and Knife ### **Procedure** - 1. Cut the banana with a knife into tiny pieces to expose more of the cells. - 2. Place the banana pieces in the blender, add a teaspoon of salt and slightly cover the mixture with warm water. The salt will help the DNA stay together during the mashing process. - 3. Mix in the blender for 5 to 10 seconds making sure the mixture is not too runny. - 4. Pour the mixture into the glass jar through the strainer. You need the jar to be about half full. - 5. Add about 2 teaspoons of liquid soap and gently stir the mixture. You should try not to create bubbles when stirring. The soap helps to break down cell membranes to release the DNA. - 6. Carefully pour very cold rubbing alcohol down the side of the glass stopping near the - 7. Wait for 5 minutes to allow the DNA to separate from the solution. - 8. Use the toothpicks to extract the DNA that floats to the surface. It will be long and stringy. - Q. What was the result? Explain. #### Note - 1. When pouring the alcohol, make sure that two separate layers are formed (The bottom layer will be the banana mixture and the top layer will be the alcohol). - 2. When extracting the DNA, twist the toothpick slowly. Be sure only to remove the DNA from the top layer. - 3. Try repeating this experiment again using other foods such as an onion or chicken liver or peas. ### 4.2.2 The structure and function of RNA #### The structure of RNA RNA has single strand structure. RNA contains the sugar ribose, phosphates, and the nitrogenous bases adenine (A), guanine (G), cytosine (C) and uracil (U) which replaces thymine in DNA (Figure 4.7). There are three most well-known types of RNA in all organisms. These are messenger RNA (mRNA), transfer RNA (tRNA) and ribosomal RNA (rRNA). All types of RNAs are formed on DNA strands by transcription process. In the next section, we shall see the role of each type of RNA in protein synthesis. Figure 4.7 RNA Structure #### The function of RNA RNA is the most important molecule in all lives. RNA is involved in a variety of functions within the cell and is found in all living organisms. RNA functions in protein synthesis and used as a storage of genetic information in some viruses. RNA facilitates the translation of the DNA into different proteins required by organisms. For example, it serves as a messenger in conveying instructions between the DNA and the ribosome during proteins synthesis. ### Inquiry activity 4.4 Comparing DNA and RNA Consider the descriptions of DNA and RNA given in this unit. What differences have you observed? Discuss and compare your answers in groups. Create a comparison table and complete for DNA and RNA, in terms of full name, definition, location, function, structure, sugar, bases and base pairs. > **BIOLOGY GRADE 11 FDRE-MoE ETHIOPIA** ### 4.3 The process of cell division After the successful completion of this section, the student will be able to: - Describe cell cycle - Define mitosis and meiosis - Describe the three stages of interphase - Mention stages in mitosis and meiosis - Explain each stages of mitosis and meiosis - Compare mitosis and meiosis What is cell division? # Self-questioning Before starting this section, ask yourself this question: "What do I know about the process of cell division (recall what you have learned in
previous grades) and what do I want to learn from this section"? Think about how the growth of your body, the healing of a wound on your body and the reproduction of organisms are possible. Growth and reproduction of organisms are possible because of cell division. The information stored in the DNA transfers from one cell to another cell and from generation to generation through cell division. DNA replicates during cell division. Where do cells come from? How does your body repair its damaged parts? ### Inquiry activity 4.5 Investigating the role of cell division Think of how your body grows, how organisms produce their offspring. Share your experience with one of your classmates near to you. Then be in groups, search from library and the internet about the role of cell division in: - the growth of your body - b. transfer of genetic materials from parents to offspring during reproduction and - c. DNA replication Discuss and present your report to class. ### 4.3.1 Cell Division It is hoped that you have learned about cell division in previous grades, grade 10. This section provides you with a summary of cell division and introduces its role in the production of genetic variation in organisms. Cell division that helps an organism to live and substitute its generation is an important event in the body of an organism. In cell division, each cell divides to make two cells and these two cells then divide to make four cells, and so on. The process that repeats in this way is called the cell cycle. Conduct an investigation from library or the internet individually and discuss in groups about the questions why do cells divide? How do cells know when to divide and when to stop? What is the significance of cell division? ### Inquiry activity 4.7 Discussion Be in groups and discuss the following questions in the class. What happens during the interphase of the cell cycle? Use the following brief description. The cell cycle is an ordered series of events that involve cell growth and cell division to produce new daughter cells (Figure 4.8). Cells on the path to cell division proceed through a series of precisely timed and carefully regulated stages of growth. The replication and division of DNA produces two identical daughter cells. The cell cycle has two major phases: interphase and mitotic phase (M phase). Figure 4.8 The cell cycle **BIOLOGY GRADE 11** FDRE-MoE ETHIOPIA ### I. The Interphase What is the difference between G0, G1, G2, S and M phases in cell cycle? Interphase is the period of preparation for a cell to divide and start the cell cycle. During interphase, the cell undergoes normal growth processes, gathers nutrients and energy and prepares for the cell division. The parent cell also makes a copy of its DNA to share equally between the two daughter cells. The three stages of interphase are called G_1 (first gap stage), S (synthesis stage), and G_2 (second gap stage). ### The G1 Phase (First Gap) G_1 phase (first gap) is the first stage of interphase in which the cell is quite active at the biochemical level. At G_1 phase, the cell accumulates the building blocks of chromosomal DNA and the associated proteins as well as sufficient energy reserves to complete the task of replicating each chromosome in the nucleus. The **GO** phase (resting phase), is a phase in which the cell is neither dividing nor preparing to divide but performs regulatory and basic cellular functions. ### The S Phase (Synthesis of DNA) The S phase is a stage in which DNA replication proceeds to form identical pairs of DNA molecules (sister chromatids) that are firmly attached to the centromeric region. In this phase, the centrosome duplicates and centrcoles develops to help organize cell division. ### **G2 Phase (Second Gap)** The G_2 phase is a stage in which, the cell replenishes its energy stores that exhausted during DNA replication at S-phase and synthesizes proteins necessary for chromosome manipulation. In this phase, some cell organelles duplicate and the cytoskeleton disintegrates to provide resources for the mitotic phase. The cell performs the final preparations for the mitotic phase to enter the first stage of mitosis. After completing the interphase, the cell undergoes either mitotic or meiotic cell divisions. #### I. Mitosis Mitosis is a basic process for life. Mitosis is the division of somatic cells. Somatic cells make up most of your body's tissues and organs, including skin, muscles, lungs, gut, and hair cells. Mitosis undergoes multistep processes during which a cell duplicates all of its contents, including its ### **Activity 4.8 Discussion** Be in groups and discuss on the following questions in the class. What are the steps in mitosis? What happens at each step? What will happen if there is uncontrolled cell division? chromosomes and organelles, which the duplicated chromosomes are aligned, separated, and moved into respective poles then, two new identical daughter cells produced. The first phase of the mitotic phase is called karyokinesis (the nuclear division) and the second phase is called cytokinesis (the physical separation of the cytoplasmic components into the two daughter cells). ### 1. Prophase Prophase is the first step in mitotic cell division in which the nuclear envelope starts to dissociate into small vesicles where chromosomes become condensed, discrete, and visible through compound microscope and centrosomes move to opposite 4.9). While poles (Figure spindle mitotic microtubules also extend between the centrosomes, sister chromatids begin to coil more tightly to develop a kinetochore in the centromeric region. Figure 4.9 Prophase of Mitosis The kinetochore attracts and binds mitotic spindle microtubules that extend from the centrosomes and the sister chromatids face the opposite poles. Moreover, organelles such as the Golgi complex or Golgi apparatus, and endoplasmic reticulum fragment disperse toward the periphery of the cell. At the end, the sister chromatids will be attached via their kinetochores to microtubules from opposing poles (Figure 4.10). Figure 4.10 Chromosome with kinetochore ### Metaphase Metaphase is the second step in the mitosis process. All the chromosomes are aligned at the metaphase plate or the equatorial plane, which is at the middle of the cell between the two poles of the cell. The sister chromatids are still tightly attached to each other by cohesion proteins (Figure 4.11). *Figure 4.* Figure 4.11. Metaphase of Mitosis BIOLOGY GRADE 11 121 FDRE-MOE ETHIOPIA ### 3. Anaphase Anaphase is the third step in which the sister chromatids separate at the centromere and are pulled rapidly toward the centrosome to which its microtubule is attached. The connection between the sister chromatids breaks down and the microtubules pull the chromosomes toward opposite poles (Figure 4.12). Figure 4.12 Anaphase of Mitosis ### 4. Telophase Telophase is the fourth step in which the chromosomes reach the opposite poles and begin to decondense (unravel). The mitotic spindles are depolymerized, the nuclear envelopes form around the chromosomes and nucleosomes appear within the nuclear area. **Cytokinesis** is the final phenomenon in which division of cell is completed by the physical separation of the cytoplasmic components resulting in two genetically identical daughter cells (Figure 4.13). Figure 4.13. Telophase of mitosis (left) and Cytokinesis (right) #### II. Meiosis Meiosis is another fundamental process for life. Meiosis is the division that produces sex cells (gametes). It has two phases, meiosis I and Meiosis II, each with their own process. During Meiosis I, a cell duplicates all of its contents and divides into two daughter cells whereas it divides into four different daughter cells with haploid number of chromosomes in Meiosis II. Meiosis reduces the number of chromosome by half and produces genetic variation through a process of crossing over and independent assortment, whereas the cells are dividing. Meiosis cell division has # Activity 4.9 Examining meiosis I Be in groups and discuss the following questions in the class. - 1. What are the steps in meiosis I? What happens at each step? - What is the difference between mitosis and meiosis I? Use the following short descriptions. eight stages (four stages for each meiosis). ### A. Meiosis In diploid organisms, chromosome exists in pairs each members of the pair are called homologous chromosomes. In meiosis I, homologous chromosomes are separated into two cells consisting of two chromatids (chromosome pair) in each daughter cell. Meiosis I is also called reduction division. Why? ### 1. Prophase -I Prophase I is the first step in part one of the meiosis stage in which chromosomes replicate to form two **sister chromatids.** In this step, nuclear envelope also disintegrates, the chromosomes begin to condense and **spindle fibers** appear. **Spindle fibers** are important for the successful division of chromosomes in that they are attached to the chromosomes at **centromeres.** A diploid cell contains two copies of every chromosome, one derived from male gamete and the other from the female gamete. These pairs of chromosomes are called homologous chromosomes. Sister chromatids are the two chromatids of a replicated chromosome that are connected by the centromere. A non-sister chromatid is one of the two chromatids of two homologous chromosomes. Non-sister chromatids homologous chromosomes form chiasmata to exchange genetic material during prophase I of meiosis I. In this phase, homologous chromosomes pair each other and crossing over takes place. During crossing over, homologous chromosomes exchange small parts to each other so that one chromosome contains parts of male and female DNA. This results in an increase in genetic variation (Figure 4.14). Crossing over increases the variability population. а Figure 4.14 Prophase I of Meiosis ### 2. Metaphase I Metaphase I is the second step in part one of the meiosis stage in which the pairs
of chromosome align next to each other along the center (equator) of the cell. When the pairs of chromosomes line up randomly, they align themselves on either side of the equator. The meiotic spindles extend from centrioles at opposites poles of the cell and attach to one chromosome of each pair (Figure 4.15). Figure 4.15 Metaphase I of Meiosis ### 3. Anaphase I Anaphase I is the third step in part one of meiosis in which the pair of chromosomes are then pulled apart by the meiotic spindle. Each of the homologous chromosomes get pulled towards opposite poles of the cell as the spindle fibres retract. This equally divides the DNA between the two cells to be formed. Unlike what happens in mitosis and meiosis II, the sister chromatids stay together (Figure 4.16). Figure 4.16 Anaphase I of Meiosis ### 4. Telophase I **Telophase I** is the fourth step in part one of meiosis in which the chromosomes complete their move to the opposite poles of the cell. During this step, the spindle fibres disappear, the full set of chromosomes gather together, the nuclear envelope reforms and a membrane forms around each set of chromosomes. **Cytokinesis** is the final phenomenon of Meiosis I in which the single cell pinches in the middle to form two separate daughter cells each containing a half set of the parent chromosomes within a nucleus (Figure 4.17). Figure 4.17 Telophase I of Meiosis (right) and Cytokinesis (left) ### **Meiosis II** ### 1. Prophase II Prophase II is the first step in part two of meiosis in which the chromosomes condense again into visible X-shaped structures in each of the two daughter cells. In this step, the membrane around the nucleus in each daughter cell dissolves away releasing chromosomes, the centrioles duplicate and the meiotic spindle forms again. This stage is similar to prophase in meiosis I (Figure 4.18) Figure 4.18 Prophase II of Meiosis ### 2. Metaphase II Metaphase II is the second step in part two of meiosis. Unlike metaphase I where chromosomes line up in homologous pairs, sister chromatid line up end-to-end in a single line along the equator of the cell. Meiotic spindle fibers from the centrioles at opposite poles attach to each of the sister chromatids (Figure 4.19) Figure 4.19 Metaphase II of Meiosis #### 3. Anaphase II Anaphase II is the third step in part twof meiosis in which sister chromatids are pulled to opposite poles of the equator due to the action of the meiotic spindle. The separated chromatids are now individual chromosomes (Figure 4.20). BIOLOGY GRADE 11 125 FDRE-MOE ETHIOPIA Figure 4.20 Anaphase II of Meiosis # Activity 4.10 Examining meiosis II Be in groups and discuss the following questions in the class. - 1. What are the steps in meiosis II? What happens at each step? - 2. What is the difference between meiosis I and meiosis II? Use the following short descriptions in the textbook. ### 1. Telophase II Telophase II is the fourth step in part two of meiosis in which chromosomes complete their move to the opposite poles of the cell, a membrane forms around each set of chromosomes. **Cytokinesis** is a phenomenon in which the cytoplasm and the cell divides producing 4 non-identical haploid daughter cells (Figure 4.21). Figure 4.21 Telophase II of Meiosis (left) cytokinesis (right) # Inquiry activity 4.11 Comparing mitosis with meiosis Be in group and Compare and contrast between mitosis and meiosis based on the description given above. Draw the cycle for both and develop a model. ### 4.4 Protein synthesis After the successful completion of this section, the student will be able to: - Describe the process of protein synthesis - Differentiate between transcription and translation - Explain the role of DNA and RNAs in protein synthesis - Read amino acids from genetic code # Self-questioning Before starting this section, ask yourself this question: "What do I know about the structure and functions of DNA and RNA and what do I want to learn from this section?" Proteins are organic compound made of amino acids joined together by peptide bonds. There are essential for the maintenance of structural attributes and the functioning of all living cells and viruses. There are 20 different naturally occurring amino acids but each protein is different in structure and function due to the sequence in which these amino acids are arranged. Protein synthesis is the stepwise process of the production of different types of proteins from amino acids. It involves **DNA**, **RNA** (mRNA, tRNA and rRNA), **amino acids**, various **enzymes** and **ribosome**. **DNA** stores genetic information used to produce different proteins. Messenger RNA (mRNA) transcribes genetic information from DNA in the nucleus with the help of enzyme RNA polymerase. Transfer RNA (tRNA) brings amino acids from the cytoplasm to the ribosome and it translates the message within the nucleotide sequence of mRNA to a specific amino acid sequence. Ribosomal RNA (rRNA) is a molecule in cells that forms part of the ribosome that help translate the information in messenger RNA (mRNA) into protein. **BIOLOGY GRADE 11** FDRE-MoE ETHIOPIA **Ribosomes** are cytoplasmic organelles that translates the mRNA template into a polypeptide chain. The process of protein synthesis involves the conversation of instructions in DNA into a functional product (proteins) through **transcription** and **translation**. Reverse transcription is a process in which a DNA molecule is synthesized from an RNA template. These all process of biological information flow is called central dogma. This can be shown diagrammatically as follows (Figure 4.22). Figure 4.22 The central dogma of life ### **Transcription** Transcription is the synthesis of mRNA molecules within the cell nucleus with the code for a protein copied from the genetic information contained in the DNA. In other words, transcription produces an exact copy of a section of DNA known as messenger RNA (mRNA). It carries complementary genetic code copied from DNA during transcription, in the form of triplets of nucleotides called **codons**. A codon is a sequence of three nucleotides and four nitrogenous bases on an mRNA strand derived from the DNA that encodes a specific amino acid. Each codon specifies a particular amino acid. For example, amino acid tryptophan is coded by a codon TAG, alanine by GCA, GCC, glycine by GGA, AGG, etc for each 20 amino acids. There are only 20 naturally existing amino acids but the number of possible amino acids combination is $4^3 = 64$ triplets. Out of the 64 codons, three are stop codons, which stop the process of protein synthesis (UAG, UAA, and UGA) and one of the codons is an initiator codon or **start codons** that initiates protein synthesis (AUG). Use the following figure to identify the triplets for all amino acids (Figure 4.23). Figure 4.23 The genetic code ### **During Transcription:** - Inside the nucleus a small portion of the DNA separates - Free RNA nucleotides attach to appropriate base pairs on the DNA template and mRNA is formed with code (triplets of nucleotides called **codons**) for protein synthesis. Similarly, tRNA and rRNA also transcribed from DNA. - mRNA detaches from the DNA - mRNA leaves the nucleus to go out into the cytoplasm and binds to ribosomes #### **Translation** Translation is the synthesis of protein from the building blocks of protein /amino acids/ based on the genetic information instructed on mRNA with the help of rRNA, tRNA and enzymes. Transfer RNA (tRNA) carries a specific amino acid from cytoplasm. This tRNA contains an **anticodon** which is three nucleotides long that is complementary to the three nucleotides long genetic codon on the mRNA. The anticodon on tRNA enables to recognize the codon of mRNA through complementary base pairing. For example, the genetic codon GUG (guanine-uracine- guanine) specifies particular amino acid valine. By binding its anticodon (CAC) that is complementary with mRNA codon /GUG/, the tRNA acts as an adapter, bringing the specific amino acid based on base complementarily (Figure 4.24). The complementary bases on the codon and anticodon held together by hydrogen bonds to from BIOLOGY GRADE 11 129 FDRE-MOE ETHIOPIA peptides bond in growing protein chain. The ribosome guides the tRNA to bind to the mRNA if it is carrying an amino acid. ### **During Translation:** - 1. mRNA carries the information from DNA align on the ribosome in the cytoplasm - 2. The ribosomes attach on to mRNA and let the tRNA loaded with specific amino acid to enter - 3. tRNA with anti-codon brings amino acids from the cytoplasm to the ribosomes - 4. The anti-codon of tRNA pairs with the codon of mRNA on the ribosome - 5. the information in messenger RNA (mRNA) translated into protein with the help of rRNA - 6. A polypeptide chain of amino acids will then form a protein (Figure 4.24) Figure 4.24 Transcription and translation in protein synthesis. ### 4.5 Mendelian inheritance After the successful completion of this section, the student will be able to: - Define inheritance. - Describe Mendelian cross. - Explain monohybrid cross. - Differentiate between phenotype and genotype. - Differentiate between homozygous and heterozygous genotypes. - Explain the test cross. - Describe Mendelian laws of dominance and laws of segregation ### **Self-questioning** Before starting this section, ask yourself this question: "What do I know about Mendelian inheritance and what do I want to learn from this section?" There is great variation among all organisms. There is also similarity among organisms. Do you know why you resemble or differ from some other members of your family, in hair type, face color, nose and ear shape, etc.? The answer is that it is due to the characteristics that you received from your parents through genetic material. An Austrian monk Gregor Mendel first explained the way in which characteristics of organisms are passed from one generation to the next generation. He studied how traits and characteristics were
transferred from one generation to the next and discovered the principles of heredity in the middle of the 19th century. What is inheritance? Gregor Mendel performed thousands of crosses with garden peas (*Pisum sativum*) at his monastery. After eight years of tedious experiments with these plants, he discovered two foundational principles of inheritance and established different terminologies used in genetics, such as *factors* (later *genes, alleles*), dominant, recessive, genotype, homozygous, heterozygous, phenotype, etc. The principles of Mendelian inheritance, or Mendel's principles of heredity, are the law of segregation and the law of independent assortment. What type of crosses were made by Gregor Mendel? How did he discovered the two principles of inheritance? Mendelian inheritance refers to the patterns of inheritance of traits or transmission of traits, controlled by a single gene with two alternative alleles, from parent to offspring. In other words Mendelian inheritance is a set of principles discovered by Gregor Mendel regarding the transmission of genetic characters from parent to offspring. BIOLOGY GRADE 11 131 FDRE-MOE ETHIOPIA ### 4.5.1 Mendelian crosses Gregor Mendel (Figure 4.25), the father of genetics, conducted experiments on pea plants (*Pisum sativum*) by cultivating them, crossing them with each other, and observing the pattern of inheritance in different stages of generation. # Inquiry activity 4.12 Do you know the characteristics of pea plants Mendel used? Why did he study Pea Plants? Why was Mendel successful? Differentiate between Alleles, F1 generations, F2 generations, pure/true breeding, dominance and recessive, discuss in group and present to class. Use the following descriptions for your discussion. Figure 4.25. Gregor Mendel Mendel studied the following seven pairs of different characters of pea plants with contrasting traits that exist in two forms. Traits in the first row are dominant traits and traits in the second row are recessive traits (Table 4.2). Table 4.2 the seven pairs of traits In order to determine the mechanism of inheritance of these seven pairs of contrasting traits/characteristics from parents to offspring, Mendel conducted different types of crosses such as monohybrid crosses, dihybrid crosses and test crosses. ### 4.5.2 Monohybrid cross A monohybrid cross is a cross between two parents to study the inheritance of a single character from each parent. Mendel performed seven types of monohybrid crosses, each involving contrasting traits for different characteristics. Mendel first conducted a self-cross, that is, tall with tall, dwarf with dwarf, violet with violet, etc., to verify the purity of plants in which a tall plant What is the difference between phenotype and genotype; homozygous and heterozygous individuals, monohybrid and dihybrid, test cross, (discuss in groups and present it to the class). produces only tall offspring in successive crosses, and a dwarf plant produces only dwarf plants. He did the same self-cross for all the traits (14 traits). He found that the seven pea plant characteristics were consistent in generation after generation of self-fertilization, and they were considered pure lines/true lines. Then, he began his experiments using purebred lines for contrasting characters. He cross-pollinated two pure lines for contrasting characters and the resultant offspring were called the F1 generation (also called the first filial generation). In this generation, one of the traits was always seen in the offspring but not the other one. Why The F1 generations were then self-pollinated which gave rise to the F2 generation (also called the second filial generation). In this generation, both traits were observed. Mendel counted the number of second-generation (F2) progeny with dominant or recessive traits and found a 3:1 ratio of dominant to recessive traits. This means when the F1 generation self-crossed, he observed that three of the offspring out of four were phenotypically the same whereas one was different. He called the characters that appear in the F1 # Inquiry activity 4.14 Practicing monohybrid crosses Show F1, F2, homozygous, heterozygous, dominant, recessive, genotype, phenotype using the Punnett square for pea plants with: - 1. Round (RR) versus wrinkled (rr) seed shapes, - 2. Pure yellow seed versus pure green seed and present in the class. generation **dominant** traits and those that appear for the first time in the F2 generation **recessive** traits. He used *capital letters* to denote the dominant allele of a gene and *small letters* for recessive alleles of a gene. His cross can be easily shown through a Punnett Square. A **Punnett square** is a chart used to determine the expected ratios of the possible genotypes and phenotype BIOLOGY GRADE 11 133 FDRE-MOE ETHIOPIA in the offspring of two parents (probabilities). This is because it is drawn to predict all the possible outcomes of all the possible random fertilization events and their expected frequencies. The following example shows the monohybrid cross for tall plants with homozygous dominant genotype (TT) and dwarf/short plants with homozygous recessive genotype (tt) using the Punnett square. The first column and row show parental generation. The second column and row show the gametes of the two plants. The box shows the first hybrid generation or F1 generation with genotype (Tt). All offspring (F1) are Tt, possessing the dominant tall gene (T) and the recessive short gene (t). The phenotype of the F1 generation is tall and the genotype is heterozygote dominant. F1- First hybrid generation - ➤ All tall (phenotype) - ➤ All Tt (Genotype) Mendel self-crossed the F1- first hybrid generation (heterozygote dominant genotype (Tt)) and obtained both tall and short plants. The box shows the second filial generation or F_2 generation with genotypes TT, Tt, Tt and tt, with a genotypic ratio of 1:2:1 and a phenotypic ratio 3:1. This implies that Mendel observed that $3/4^{th}$ of the offspring possess at least one copy of the dominant tall gene, whereas $1/4^{th}$ of the offspring possess two copies of the short gene. In other words, the phenotype of the F2 generation is 3tall and 1 short and the genotype is 1 TT, 2 Tt and 1 tt. The above crosses can also be shown with a picture of the plants as follows (Figure 4.26). In this way, Mendel followed the inheritance of all the seven pair of contrasting traits and found that the paired pea traits were either dominant or recessive, as shown below. He identified round (RR), yellow (YY), inflated (II), green (GG), purple (PP), axial (AA) and tall (TT) as dominant trait and wrinkled (rr), green (yy), constricted (ii), yellow (gg), white (pp), terminal (aa) and short (tt) as recessive trait. #### Figure 4.26. Monohybrid cross After conducting a monohybrid crosses for all seven contrasting pairs of pea plants, Gregor Mendel calculated the number of F2 generation and phenotypic ratios of his experiment as shown in the table below (Table 4.3). For example, to calculate phenotypic ration of F2 generation for flower color, divide 705 to 224 and 224 to 224 which is equal to 3.15:1. Table 4.3 number of F2 generations and phenotypic ratios from Gregor Mendel | | P1 crosses Dominant traits | | | Dominant :
Recessive | |-----------------------------|----------------------------------|---------------------|---------------------------------------|-------------------------| | Character | x recessive | F1 | F2 | Ratio | | S | traits | | | | | Flower | Purple x white | All | Dominant (705) : Recessive | 3.15:1 | | color
Flower
position | Axial x terminal | purple
All axial | Dominant (651): Recessive (207) | 3.14:1 | | Seed
color | Yellow x green | All
yellow | Dominant (6022) :
Recessive (2001) | 3.01:1 | | Seed
shape | Round x wrinkled | All | Dominant (5474) :
Recessive (1850) | 2.96:1 | | Pod
shape | Smooth or inflated x constricted | | Dominant (882) : Recessive (299) | 2.95:1 | | Pod color | Green x yellow | All green | Dominant (428) : Recessive (152) | 2.82:1 | | Stem length | Tall x short | All tall | Dominant (787) : Recessive (277) | 2.84:1 | BIOLOGY GRADE 11 135 FDRE-MOE ETHIOPIA Mendel drew the following conclusions: ➤ Each parent in his F1 generation starts with two hereditary "factors." One factor is dominant and the other is recessive. - > The factors separate in the parent. Only one factor from each parent is contributed to the offspring. - ➤ Each offspring inherits one factor from each parent. If the dominant factor is present, it will be expressed even if the recessive factor is also present. - The recessive factor will be expressed if only recessive factors are present. #### 4.5.3 Dihybrid Cross A dihybrid cross is a cross between two traits of individuals at a time. It is a cross between two entities of two different traits such as round seed shape-yellow pod color and wrinkled seed shape-green pod color. The cross between round-yellow seed (RRYY) and wrinkled-green seed (rryy) resulted in all round yellow seeds (RrYy). This is the F1 generation. The outcome of the cross between F1 generations (RrYy x RrYy) resulted in round-yellow, wrinkled-yellow, wrinkled-green and round-green, as follow. | 1 | F1 | | | | Male gametes | | | |---|------------|----|-------|------|--------------|------|--| | | Generation | Χ | RY | Ry | rY | ry | | | | | RY | RYRY | RRYy | RrYY | RrYy | | | | Female | Ry | RRYy | RRyy | RrYy | Rryy | | | | gametes | rY | RrYY | RrYy | YrYr | Yrry | | | | | ry | Rr Yy | Rryy | rrYy | rryy | | # F2 generation Phenotype Round Yellow = 9 Round green = 3 Wrinkled Yellow = 3 Wrinkled green = 1 9:3:3:1phenotypic ration #### **Activity 4.15 practicing dihybrid cross** Using your knowledge of dihybrid crosses, create a Punnett square to show the cross between Geen axial (GGAA) and yelllow terminal (ggaa). What are the gametes? How can we gets the gametes to cross between F1 generations (GgAa x GgAa)?
From monohybrid and dihybrid crosses, Mendel discovered the two foundational laws of inheritance. These are the **laws of segregation** and the **law of independent assortment**. #### The Law of segregation How did Mendel discovered the Law of segregation? The Law of segregation is the first Mendel's law of heredity discovered from a monohybrid cross. It states that a diploid organism passes alleles for a trait randomly to its offspring, whereby the offspring receives one allele from each parent. In essence, the law states that copies of genes randomly separate or segregate during meiosis so that each gamete receives only one allele. Gregor Mendel crossed various pure lines of garden peas and observed that traits are inherited as alternate states of independent units of inheritance or genes (factors), and that these units come in pairs. Each unit of inheritance can have alternate states (alleles) that segregate at meiosis, during which each gamete receives only one allele. This is called the law of segregation. The physical basis of Mendel's law of segregation is the first division of meiosis in which the homologous chromosomes with their different versions of each gene are segregated into daughter nuclei. As chromosomes separate into different gametes during meiosis, the two different alleles for a particular gene also segregate so that each gamete acquires one of the two alleles as chromosomes separate into different gametes during meiosis (Figure 4.27). #### **Ev** #### **Inquiry activity 4.16** Discuss the law of segregation with examples based on the previous lesson on monohybrid cross. Figure 4.27 Segregation of maternal and paternal alleles into separate gametes #### The Law of Independent Assortment How did Mendel discovered the Law of independent assortment? The Law of independent assortment is the second Mendel's law of heredity which states that genes do not influence each BIOLOGY GRADE 11 137 FDRE-MOE ETHIOPIA other with regard to the sorting of alleles into gametes. This indicates that every possible combination of alleles for every gene is equally likely to occur. According to this law, the separate genes for separate traits are passed independently of one another from parents to the offspring. The Law of independent assortment occurs in metaphase I of meiosis when pairs of chromosomes randomly align next at the center. For example, in the dihybrid cross with characteristics of seed color and seed texture for two pea plants, the one that has yellow, round seeds (YYRR) and another that has green, wrinkled seeds (yyrr) alleles sort into gametes independently and every possible combination of alleles for every gene is equally likely to occur (Figure 4.28). The genotype of the F₁ generation of all offspring is YyRr. In the F2 generation, according to the law of independent assortment, a gamete in which an r allele sorted would be equally likely to contain either a Y allele or a y allele. Here the chances of formation of gametes with the R allele and the r allele are 50:50. The chances of formation of gametes with the Y allele and the y allele are also 50:50. Thus, each gamete should have either R or r and Y or y. The Law of Independent Assortment states that the segregation of R and r is independent of the segregation of Y and y. Hence, four equally likely gametes (YR, Yr, yR, and yr) can be formed when the YyRr heterozygote is self-crossed (see also the previous dihybrid cross). Figure 4.28 Independent assortment of alleles during gametes formation #### 4.5.4 Test Crosses How did Mendel determined the unknown genotype of a trait? Another cross that was introduced by Gregor Mendel is a testcross. Knowing the genotypes of an individual is usually an important part of a genetic experiment. A test cross is used to determine the unknown genotype of an organism by crossing with a known homozygous recessive genotype. For example, when we cross a known parent of a homozygous recessive with an unknown parent and if the dominant trait is observed in all progenies, the unknown genotype is homozygous dominant. In contrast, when we cross a known homozygous recessive and an unknown genotype of parent and if the recessive trait is manifested in any of their progenies, it means that the unknown genotype is heterozygous dominant. # Inquiry activity 4.17 Investigating test cross A breeder wants to know his/her dogs genotype. The dogs are black and yellow. Black is dominant to yellow. The breeder breeds the black dog with a yellow dog and gets three black dogs and three yellow dogs. What is the genotype of the parental black dog? Search the answer using Punnett square. For example, if you have a pea plant with a purple flower it might be either a homozygote (*PP*) or a heterozygote (*Pp*). You can cross a purple flower to a white flower plant, because you know the genotype of a white flower plant is homozygous recessive (*pp*). If the phenotypic ratio in the F1 generation were all plants with purple flowers, the unknown genotype of the parent would be homozygous (PP). If the phenotypic ratio in the F1 generation were 1:1, the unknown genotype of the parent would be heterozygouse (Pp). The following figure (Figure 4.29) shows the cross using Punnett square. Figure 4.29 Test cross All purple 2 purple: 2 white = 1:1 phenotypic ratio In addition, Gregor Mendel introduced a backcross which is a cross between the F1 individual and either of the two parents. In a back cross, the F1 hybrid is crossed back with any of the parents, either recessive/or dominant. BIOLOGY GRADE 11 139 FDRE-MOE ETHIOPIA #### **Inquiry Activity 4.18 Investigating Mendel's principles** Investigate how to apply Mendelian genetics in human using human single gene traits example, earlobes, albinism, hair style eye color, ability to roll your tongue, etc. Show the dominant, the recessive alleles, phenotype and genotype, phenotypic and genotypic ratio, gametes and the cross using the punnett square. Show backcross using the punnett square with an example and compare test cross. #### 4.6 Sex determination At the end of this section, the student will be able to: - 1. Identify sex chromosomes - 2. Explain how sex is determined #### **Self-questioning** Before starting this section, ask yourself this question: "What do I know about sex determination and what do I want to learn from this section?" During fertilization of egg by sperm, a zygote is produced and developed into either male or female. What determines an individual to be male and female? Sex refers to a set of biological attributes that are usually categorized as female or male in organisms. Sex determination in organism is remarkably diverse. In some organisms, sex of both male and female resides within the same individual (hermaphroditic species), whereas other organisms have separate male and female sexes (dioecious) or may be haplodiploidy in which males develop from unfertilized eggs and are haploid, and females develop from fertilized eggs and are diploid. The sex of human beings and other mammalian is determined genetically by sex chromosomes. **Sex chromosome**: Either of a pair of chromosomes that determine whether an individual is male or female is designated by X and Y. In humans, out of 23 pairs of chromosomes, one pair is sex chromosomes and 22 pairs are autosomal chromosomes. Individuals having two X chromosomes (XX), are female, whereas individuals having one X chromosome and one Y chromosome (XY) are male. During meiosis, the sex chromosome pair of male XY and female XX separates. While male passes on an X or a Y to separate gametes, one-half of the gametes (sperm) contain the X chromosome and the other half gametes contain the Y chromosome. Female has two X chromosomes and passes on X chromosomes to egg cell. The eggs fertilized by X-bearing sperm become females (XX), whereas those fertilized by Y-bearing sperm become males (XY). The process of sex determination begins after fertilization, a process where male and female gametes fuse to form a zygote, or a single-celled, fertilized egg. The following figure shows the separation of sex chromosomes during gamete formation by meiosis cell division and gamete combinations during fertilization for determining the sex of the offspring (Figure 4.30). Figure 4.30 Sex determination #### **Inquiry activity 4.19 Investigating sex determination** Be in groups and search from library or internet about the following, discuss and present it in the class - 1. The difference between hermaphroditism and haplodiploidy - 2. How sex determination occurs in other organisms like insects, birds, fish and reptiles. - 3. The probability of being male and female in human reproduction BIOLOGY GRADE 11 141 FDRE-MOE ETHIOPIA #### 4.7 Non-Mendelian inheritance After the successful completion of this section, the student will be able to: - Define non-Mendelian inheritance. - Differentiate between dominance. incomplete dominance and COdominance. - Describe ABO blood groups. - Explain inheritance of blood group. - Describe blood transfusion. - Explain Rh blood group and inheritance - Describe sex-linked inheritance. - Mention environmental factors affect the phenotype of organisms. experiments with pea plants, other researchers also investigated the mechanism of inheritance and found that the dominance of some traits could not always # Self-questioning Before starting this section, ask yourself this question: "What do I know about Non-Mendelian inheritance what do I want to learn from this section?" Think about what you have learned from the theory of Mendelian inheritance, the mechanism of transmission of genetic material from parents to offspring. After Mendel revealed the results of his the What is difference between Mendelian and non-Mendelian inheritance? hold true. Accordingly, several different patterns of inheritance have been revealed.. The non-Mendelian Inheritance is a form of genetic Inheritance that is not in accordance with Mendel's law. Therefore,
Non-Mendelian genetics are, therefore, any inheritance patterns that don't follow one or more laws of the Mendelian genetics. Gregor Mendel explained that gene might exist indifferent forms (alleles) that are either dominant or recessive. However, there are other conditions in which alleles show different dominance relationships (e.g. Co-dominance and Incomplete dominance) and modes of inheritance (Gene linkage and multiple allelism). These are examples of non-Mendelian inheritance. #### 4.7.1 Co-dominance, Incomplete dominance and Multiple alleles #### **Co-dominance** Co-dominance is a condition in which both alleles are expressed equally rather than a dominant allele taking complete control over a recessive allele. This means that when an organism has two different alleles (heterozygote), it will express both alleles at the same time. Coat color is an example of codominance in short-horned cattle. The following example shows the cross between red and white cattle that produce ratio 1 red: 2 roans: 1 white coat colour because of codominance. Heterozygous individuals (RW) show roan coat colour as both the alleles express themselves equally (Figure 4.31). Figure 4.31. Co-dominance dominance in the cross between red and white cattle #### **Incomplete dominance** Similar to co-dominance, in incomplete dominance, **Mendel's** principle of dominance is not applicable. In incomplete dominance, the mix of genetic traits that produce an intermediate phenotype result in heterozygotes in terms of physical traits. The pink rose is a great example in which the white and red varieties of rose are hybridized resulting pink rose offspring. Example - Phenotype = whit rose; genotype = WW; phenotype = red rose; genotype = rr BIOLOGY GRADE 11 143 FDRE-MOE ETHIOPIA F1 = all pink no one is dominant, either white or red F2 = 1 white, 2 pink, 1 red = 1:2:1 #### **Activity 4.20 Investigation** Be in groups and conduct an investigation on co-dominance, incomplete dominance and multiple alleles. Discuss and present you findings to the class. #### **Multiple alleles** Gregor Mendel suggested that each gene would have pair of factors (alleles), which are inherited from two parents (one from each parent). However, some genes exist in more than two alleles. In addition to co-dominance, the ABO blood group system in humans is an example of a traits with multiple alleles because it exists in three allelic forms: A, B, and O. ABO blood group system is the classification of human blood based on the presence or absence of the antigens A and B on the surface of the red blood cells. As a result, people may have type A, B, Do you know your blood type? What determines the blood type of an individual? combinations. O, or AB blood. This blood type classification refers to which of the certain proteins called antigens are found on the red blood cells. As shown in the table (table 4.4), there are six possible ABO genotypes because the three alleles, which are taken two at a time, result in six possible Table 4.4 The genotype and phenotype of ABO blood groups | ABO Blood Group | | | | | |-----------------|------------------------|--|--|--| | Genotype | Phenotype (Blood type) | | | | | AA | А | | | | | AO | А | | | | | BB | В | | | | | ВО | В | | | | | 00 | О | | | | | AB | AB | | | | The A and B blood types are also co-dominant. Thus, if two people with AA and BB blood type alleles have children, every single child (male or female) from this couple would be heterozygotes (AB) with AB blood type. During blood transfusion, it is very important to determine the antigens and antibodies present in each of the ABO blood types. The blood types and the antigen and antibody they contain are shown below (Table 4.5). If someone has blood type A, this means that the person's red blood cells have the A antigen and the blood plasma contains anti-B antibodies. If this person were to receive a transfusion of type B or type AB blood, both of which have the B antigen, his/her anti-B antibodies would attack the transfused red blood cells. No antigen is associated with the O allele, so people with the OO genotype (type O blood) have no antigens for ABO blood types in their blood. Table 4.5 Antigens and antibodies in ABO blood types | | | ABO Blood Gro | ups | | |-------------------------|--|--|---|---| | Antigen
(on RBC) | Antigen A | Antigen B | Antigens A + B | Neither A or B | | Antibody
(in plasma) | Anti-B Antibody ¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬ | Anti-A Antibody | Neither Antibody | Both Antibodies イ | | Blood
Type | Type A Cannot have B or AB blood Can have A or O blood | Type B Cannot have A or AB blood Can have B or O blood | Type AB Can have any type of blood Is the universal recipient | Type 0 Can only have O blood Is the universal donor | BIOLOGY GRADE 11 145 FDRE-MOE ETHIOPIA #### Inquiry activity 4.21 Investigating blood type inheritance Use the above genotype as well as the Punnett square, and show co-dominance and blood type of individuals by crossing blood group A with blood group B; blood group A with blood group AB and blood group B with blood group AB. Explain the blood type of the offspring from the cross and discuss the possible problems in children due to the presence or absence of antigen and antibody. If the father is blood group O and the mother is blood group AB, then show the blood group of their children with phenotypic and genotypic ratio. #### 4.7.2 Rh factor inheritance in humans and its medical importance What is the difference between Rh and ABO blood groups? The Rh factor inheritance is the inheritance of a blood group other than the ABO blood group. The Rh factor is inherited independently of the ABO blood types. There are two different alleles for the Rh factor known as Rh+ with dominant Rhesus D antigen and Rh⁻, without antigen. People who are Rh⁺/Rh⁺ or Rh⁺/Rh⁻ genotype possess the Rh (D) antigen and are called Rh positive. People who are Rh⁻/Rh⁻ do not possess the antigen—are called Rh negative. Just like the ABO alleles, each biological parent transmits one of their two Rh alleles to their child. The following table (table 4.6) shows the genotype, phenotype, antigen, antibody and transfusion in the Rh blood group. Table 4.6 Rh blood group type | K | Genotype | Phenotype | Blood Protoins(Antigon) | Blood transfusion | | | |---|------------|-----------|--------------------------|-------------------|---------------|--| | | | | Proteins(Antigen) | Donates to | Receives from | | | | Rh+/ Rh | Rh+ | Rh(D) proteins | Rh+ | Rh+, Rh- | | | þ | Rh +/ Rh - | Rh+ | Rh(D) proteins | Rh+ | Rh+, Rh- | | | | Rh-/ Rh- | Rh- | None | Rh- | Rh- | | A parent who is Rh⁻ can only pass an Rh⁻ allele to her/his son or daughter. A parent who is Rh⁺ can pass either an Rh⁺ or Rh⁻ allele to his/her son or daughter. These parents would have Rh⁺ children (Rh⁻ from one parent and Rh⁺ from the other, or Rh⁺ from both parents) or Rh⁻ children (Rh⁻ from both parents). An Rh⁺ father and Rh⁻ mother can have a child with Rh⁺/ or Rh⁻. The baby with Rh⁺ causes Rh sensitization in the mother because she is exposed to Rh antigen, which she builds up antibodies against the antigen for the first pregnancy. Future pregnancies # Inquiry activity 4.22 Investigating Rh factor Use the Punnette square to show the possible blood types of children produced when a man with blood group Rh⁺ marries to a woman with Rh⁻; a man with Rh⁺ marries to a woman with Rh⁺ and show the problems created on the child due to Rh incompatibility. Have you ever heard people saying "*Shotelay*" (an Amharic word) in your area? It is common in some areas. Investigate if it has a relation with Rh factor and report your finding to the class. can be increasingly difficult, as the mother's antibodies attack the baby (Figure 4.32). However, it is possible to prevent Rh sensitization complications by taking anti-D vaccine. Figure 4.32 Rh Sensitization during pregnancy #### 4.7.3 Sex-linked inheritance in humans Sex in human is determined by two sex chromosomes. Females have two copies of the X chromosome (XX), whereas males have one copy of the X chromosome and one copy of the Y chromosome (XY). Because males have only one X chromosome, genes that are on the BIOLOGY GRADE 11 147 FDRE-MoE ETHIOPIA chromosome are expressed because there is no similar gene on the corresponding Y chromosome that masks them. Hence, men are far more likely to get sex-linked genetic diseases than women are. Men also have their own special Y chromosome that women do not possess. Hence, any gene on the X chromosome of male will be expressed regardless of whether it is dominant or recessive. Hemophilia is an example of a sex-linked genetic diseases in humans. This gene is carried on the X chromosome and can only be passed on to males through their mother. The crosses and offspring of sex-linked trait hemophilia can be shown as follows. In this case, the mother is a carrier of the sex-linked trait. She does not have the diseases because her normal X chromosome masks them. But her son gets the disease because there is no corresponding X chromosome on Y that masks it. #### **Inquiry activity 4.23 Investigating inheritance of X-linked traits** Investigate the following, discuss and present in class: Search X-linked trait colour blindness from reference books in a library or the internet and discuss how it can pass from parent to offspring. #### 4.7.4 Environmental effects on phenotype How does the environment affects the phenotype of organisms? **BIOLOGY GRADE 11** Various organisms live in different environmental conditions, ranging from the hottest to the coldest areas, from watery to dry areas and from areas with ample food to those where there is a scarcity of food. The environment can affect the
phenotype of these organisms. A phenocopy is an environmentally induced phenotype of an individual, which is identical to the phenotype of another individual determined by genotype. In other words, the phenocopy induced by the environmental conditions mimics the phenotype produced by a gene. Most of the time phenocopies can result from exposure to radiation, chemicals poisons, temperature shocks etc. An example of phenocopy due to temperature variation is observed in Himalayan rabbits. Himalayan rabbits have a white colored coat along with a black tail, nose, and ears when raised in moderate temperatures. However, they also show black coloration of their coats when raised in cold temperatures, resembling the genetically black rabbits (Figure 4.33). Figure 4.33 White and Black(phenocopy) Himalayan rabbit #### 4.8 Human pedigree analysis and its importance After the successful completion of this section, the student will be able to: - Define pedigree - Describe a pedigree using heritable traits. - Explain the importance of pedigree analysis. ## Self -questioning Before starting this section, ask yourself this question: "what do I know about pedigree analysis and what I want to learn from this section. Think about the people in your environment. Have you observed or heard of any family that has caught any disease due to a genetic disorder that can be transmitted from parent to offspring? In various plant and animal species, scientists study the inheritance of phenotypes, or traits, using How do a pedigree helps to determine the transfer of a trait in a family? carefully controlled mating experiments called crosses. However, it is practically and ethically difficult to cross human beings. Therefore, researchers analyze pedigrees, or family trees, to understand how human traits and diseases are inherited. How a gene that passes from one generation to the next generation in a family can determine the characteristics in humans' pedigree? A pedigree can show the transfer of some genetically determined disease from one person to another in a family. Specifically, it can show whether a trait is an autosomal dominant, autosomal **BIOLOGY GRADE 11** FDRE-MoE ETHIOPIA recessive or X-linked trait. Pedigrees show relationships and identify individuals with a given trait from the history of a family. #### **Pedigree analysis** A typical pedigree that consists of squares and circles which represents males and females, respectively. Rows show generations with the oldest generation at the top row and with each subsequent generation on separate rows. A horizontal line connecting two parents is called a "marriage line". A vertical line connects children to couples. For example, in the pedigree given below (Figure 4.34) - 1. The square represents the male, the circle represents the female, and the line between them represents the marriage. - 2. The red are affected individuals and the blue are unaffected individuals - 3. The top row of a pedigree is the original pair. - 4. Two individuals who are connected by the horizontal line are breeding pairs. - 5. The children of the pair are connected to them by vertical lines. - 6. The next row of the pedigree shows the pair's children, as well as the partners of the children. - 7. The third row of the pedigree shows the next generation, the grandchildren of the pair at the top of the pedigree). Figure 4.34 below is an example of a pedigree of an autosomal dominant trait. This pedigree begins with an affected male and an unaffected female. - 1. The first child (on the left) is an affected male, who married an unaffected female and produced two children (an affected female and an unaffected male). - 2. The second child is an unaffected male married to an unaffected female and produced three unaffected children (1 male and 2 females). - 3. The third child is an affected female who is not married. - 4. The fourth child is an unaffected female who is not married. - 5. The fifth child is an affected female married to an unaffected male and produced four children (an affected male, an unaffected male, an affected female, and an unaffected female). Figure 4.34 Pedigree of an autosomal dominant trait Figure 4.35 below is an example of a pedigree of an autosomal recessive trait. In this pedigree, individuals that are half-shaded are heterozygous and therefore do not show the trait). The example shows two heterozygous individuals who have four children. - 1. The first child (on the left) is an unaffected female, married to a heterozygous male who produced three children (an unaffected female, an unaffected male, and a heterozygous male. - 2. The second child is an unaffected male married to an unaffected female who produced two unaffected children (1 male and 1 female). - 3. The third child is a heterozygous female, not married. - 4. The fourth child is an affected male married to an unaffected female and produced four children: one heterozygous male, one heterozygous female, and one unaffected male and one unaffected female). BIOLOGY GRADE 11 151 FDRE-MOE ETHIOPIA Figure 4.35 Pedigree of an autosomal recessive trait Pedigree analysis can provide information about trait inheritance by examining the presence and absence of a trait throughout the history of a family. Pedigrees can give important clues about the risk of disease inheritance and propagation. In general analyzing pedigrees can reveal the following: - 1. Whether a trait is dominant or recessive - 2. The type of chromosome, autosomal or sex, a trait is linked to - 3. The genotypes of family members, and - 4. The probabilities of phenotypes in the future generations. #### **Inquiry activity 4.24 Describing a pedigree** Find a pedigree that shows the transfer of a trait in a family and determine whether it is autosomal dominant, autosomal recessive, or X-linked in the library or on the internet. Be in a group, discuss how these can be shown in a pedigree, and present it to the class. Take the inheritance of freckles, small brown spots on the skin, hemophilia and colorblindness in a family as an example. #### 4.9 Genetic disorders After the successful completion of this section, the student will be able to: - List common genetic disorders in humans - Differentiate between single-gene, chromosomal and multifactorial disorders - Explain the difference between autosomal dominant, recessive and xlinked disorders - Give examples of genetic disorders in humans. Before starting this section, ask yourself this question: "What do I know about genetic disorders and what do I want to learn from this section?" Think about diseases caused by genetic disorders and transmitted from parents to offspring in consecutive generations in the community you are living in. Diabetes, cancer, Down syndrome, What are the factors that cause genetic disorders? How? Turner syndrome, hemophilia, cystic fibrosis, and albinism are some of the commonly known genetic disorders, which can be further categorized as autosomal dominant, autosomal recessive, x-linked, chromosomal and multifactorial disorders in human being. A genetic disorder is a disease that is caused by a change, or mutation, in an individual's DNA. Mutation is a change in the DNA sequence of an organism due to either errors that occur during DNA replication or environmental factors. Parents pass genes on to their children, and some of these genes may contain genetic disorders. Some genetic disorders are carried by a dominant allele, whereas others are carried by a recessive allele. Genetic disorders can be grouped into three main categories. #### 4.9.1 Single-gene disorders Single gene disorders are caused by defects in **one particular gene** due to changes or mutations that occur in the DNA. These disorders are known as **monogenetic disorders**. There are many well-known single-gene disorders. The pattern of inheritance depends on whether they are controlled by genes on autosomes or by genes on sex chromosomes. The three major patterns of BIOLOGY GRADE 11 153 FDRE-MOE ETHIOPIA Mendelian inheritance for genetic disorders and diseases are autosomal dominant, autosomal recessive, and X-linked. #### A. Autosomal dominant Autosomal-dominant disorders are expressed in the heterozygous condition. Autosomal - dominant disorders are controlled by genes on one of human autosomes (22 pairs of non sex chromosomes) that do not differ between males and females. Therefore, autosomal-dominant disorders are inherited in the same way regardless of the sex of the parent or offspring. **Huntington's disease** is a well-known example of an autosomal dominant single- # Inquiry activity 4.25 Investigating Huntington's disease Be in groups and conduct an investigation on the causes, symptoms and treatments of Huntington's disease from a library or by asking a physician in your area. Form three groups by which the first group can search on the cause, the second symptom and the third group treatment of Huntington's disease. gene disease. Individuals with a single defective gene will have Huntington's disease later in life by a progressive neurodegenerative disorder. #### B. Autosomal recessive Autosomal-recessive disorders are expressed in homozygous conditions. An autosomal recessive disorder will most commonly occur when both parents carry the trait and the offspring receives the defected gene from each parent. Cystic fibrosis and Albinism are autosomal recessive disorders controlled by a single autosomal gene with two alleles. Although both parents are the carriers off the trait, they are unaffected. A child with cystic fibrosis or albinism has inherited a defective gene from each parent. #### **Inquiry activity 4.26 Investigating albinism** Most forms of albinism in humans have a Mendelian inheritance pattern. Show the outcome using the Punnett square for albinism (hint: the allele for normal pigmentation (let's call it R) is dominant to the allele for albinism (/)). Explain the causes, symptoms and treatment of albinism and
cystic fibrosis. Form two groups and the first group can do on albinism and the second cystic fibrosis. Within each group, form three subgroups and the first group can take cause, the second symptom and the third group treatment for each disease. Present your findings in class #### C. X-linked disorders As discussed in the above section, sex-linked inheritances are controlled by genes on the sex chromosomes. Females two Xhave chromosomes that have two alleles (XX) for any X-linked disorder. Therefore, they must inherit two copies of the recessive allele to express an X-linked recessive disorder, i.e. XhXh for hemophilia as indicated above. This explains why X-linked recessive disorders are less common in females than in males. Hemophilia, the blood-clotting disorder, is an example of a recessive X-linked disorder that is characterized by the blood's inability to clot normally. # Inquiry activity 4.27 Investigating hemophilia Be in groups and conduct an investigation on the cause, symptoms and treatment of hemophilia from a library or by asking a physician in your area. Form three groups and the first group can do on the cause, the second symptom and the third group treatment of hemophilia. Present your findings in class #### 4.9.2 Chromosome disorders Chromosome disorders are disorders resulting from changes in the number or structure of chromosomes. Because chromosomes are the carriers of the genetic material, abnormalities in the chromosome number or structure can result in disease. Chromosomal abnormalities typically occur due to errors during cell division. BIOLOGY GRADE 11 155 FDRE-MoE ETHIOPIA Down syndrome or trisomy 21(2n+1), is an example of the most commonly known genetic disorder that occurs when a person has three copies of chromosome 21, which results from an extra chromosome 21 (trisomy 21: three copies of chromosome 21). The most common types of chromosomal disorders occur due to the following (Figure 4.36): **Aneuploidy**: wrong number of chromosomes (2n-1, 2n-2, 2n+1, 2n+2, search the type of disorder for each). **Deletion:** a part of a chromosome is missing. **Inversion**: occurs when there are two breaks on a chromosome and the segment between the breakpoints flips around and reinserts back into the chromosome; **Translocation**: is a rearrangement of a chromosomal segment from one location to another. # Inquiry activity 4.28 Investigating Down syndrome Be in groups and conduct an investigation on the cause, symptoms and treatment of Down syndrome from a library or by asking a physician in your area. Form three groups and the first group can do on the cause, the second symptom and the third group treatment of Down syndrome. Present your findings in class #### **Inquiry activity 4.29 Investigating diabetes and cancer** Be in groups and conduct an investigation on the cause, symptoms and treatment of diabetes, and cancer from a library or by asking a physician in your area. Form two groups and the first group can do on the diabetes and the other group cancer. Within each group form three subgroups and the first group can do on the cause, the second symptom and the third group treatment for each disease. Present your findings in class. Figure 4.36 Types of changes in chromosome structure #### 4.9.3 Multifactorial disorders Multifactorial disorders are complex disorders caused by changes in the combination of multiple genes, complex interaction with environmental and lifestyle factors such as smoking, drinking alcohol, eating an unhealthful diet, not getting enough sleep and living in an area that has high levels of air pollution. Examples of multifactorial inheritance include diabetes and cancer. BIOLOGY GRADE 11 157 FDRE-MOE ETHIOPIA #### **Genetic testing and counseling** 4.10 After the successful completion of this section, the student will be able to: - Define genetic testing - Explain genetic counseling - List the importance of genetic testing and counseling Recalling from the genetic disorders we discussed above, we saw that these genetic disorders have their own treatments. To treat these disorders, genetic testing is important to identify the type of the disorder. Genetic counseling is also important because diseases caused by genetic disorders are complicated and may have different psychological and social impacts. Do you know any genetic testing and counseling centers in your area? If so, list them and explain their importance to our health. As we have discussed in the above sections, there are different diseases that are caused by genetic disorders. To mention some of them diabetes, cancer, Down syndrome, Turner syndrome, hemophilia, cystic fibrosis, Huntington's disease, muscular dystrophy, epilepsy and albinism are the most common ones. # Self-questioning Before starting this section, ask yourself this question: "What do I know about genetic testing and counseling and what do I want to learn from this section?" Genetic testing examines the genetic material and tells an individual about the likelihood and risk of passing genetic disorders on to children. It identifies the likelihood of parents who pass a genetic disease or disorder to their children. Genetic testing examines if there are any change in our DNA that can inform us the well-being of our health of us and our family. For instance, a woman may have diagnostic tests as part of her pregnancy checkups and scansto find out if her baby has a genetic disorder or not. Amniocentesis and chorionic villus sampling are examples of diagnostic tests to be taken during pregnancy. Genetic counseling is the process of checking a family with regard to the medical history and medical records, ordering genetic tests, evaluating the results of these tests and recording, and helping parents understand and reach decisions about what to do next. It helps to make informed decisions about genetic testing. It gives information about how genetic disorders might affect one's family in order to increase understanding of genetic disorders that are inherited in the family. People can obtain genetic counseling about genetic disorders mentioned at the beginning of this section. Genetic counselors can help people in identifying and interpreting the risks of an inherited disorder, explaining inheritance patterns and suggesting genetic testing #### 4.11 Gene therapy After the successful completion of this section, students will be able to: - Define gene therapy - Mention the types of gene therapy - Explain the types of gene therapy It is important here to recall that the genetic disorders discussed above which are caused by a change on the DNA of an organism can be transmitted from generation to generation and other types of disease affect human # Inquiry activity 4.30 Investigating genetic testing and counseling Be in groups and visit a nearby health institution/center and ask about common genetic disorders in the area and the treatment mechanisms such as genetic testing and counseling and their role in preventing genetic disorders. Discuss and present your finding to the class. ## Self-questioning Before starting this section, ask yourself this question: "What do I know about gene therapy and what do I want to learn from this section? beings. There are different mechanisms by which we treat these disorders. One of these treatment mechanisms is called gene therapy. Gene therapy is the technique that introduces genes into the existing cells to **modify a person's** genes to prevent or cure a wide range of diseases (Figure 4.37). The promising development in using gene therapy threat a brain tumor that develops from rapidly dividing cancer cells, which are caused by some defective or mutated gene is an example for this BIOLOGY GRADE 11 159 FDRE-MOE ETHIOPIA #### **Inquiry activity 4.31 Investigating gene therapy** Think of the genetic disorders mentioned above. Spend some time in reviewing the lesson for your classmate. Then, be in a group, search from library and the internet or consult a physician about gene therapy, types of gene therapy and the way how it works to cure genetic disorders, discuss and present it to the class. Figure 4.37 gene therapy procedures There are two different types of gene therapy depending on the types of cells are treated. These are: - Somatic gene therapy refers to transferring a section of DNA to somatic cells and the effects will not be passed onto the patient's children. - 2. Germ line **gene therapy** refers to transferring a section of DNA to sex cells and the effects will be passed onto the patient's children and subsequent generations. Gene therapy can be done through different mechanisms, such as by replacing a disease-causing gene with a healthy copy of the gene, inactivating a disease-causing gene that is not functioning properly and introducing a new or modified gene into the body to help treat the disease. To do this, there are different types of gene therapy products. It includes plasmid DNA, viral vectors, bacterial vectors, human gene editing technology and patient-derived cellular gene therapy products. These are used to introduce curative genes into the patient and edit the infected genes. > Plasmid DNA uses DNA molecules to carry curative genes into human cells. > Viral vectors uses modified viruses as vectors (vehicles) to carry curative genes into human cells. - Bacterial vectors use modified bacteria as vectors (vehicles) to carry curative genes into human tissues. - > Human gene editing technology is used to disrupt harmful genes or to repair mutated genes. - > Patient-derived cellular gene therapy products use cells removed from the patient genetically modified and then returned them to the patient. Although gene therapy is a promising treatment option for a number of diseases, there are challenges. Some of the challenges are related to delivering the gene to the right place and switching it on, avoiding the immune response, making sure the new gene does not disrupt the function of other genes and the
cost of gene therapy. #### 4.12 Breeding After the successful completion of this section, the student will be able to: - Define breeding - Explain breeding in animals and plants - Mention breeding mechanisms - Identify indigenous knowledge used in breeding - Explain indigenous selection and hybridization mechanisms used by local peoples # Self-questioning Before starting this section, ask yourself this question: "What do I know about breeding indigenous knowledge used in breeding and what do I want to learn?" Think about the ways farmers and agricultural experts have used in your area to select varieties of animals and plants based on some desired characteristics, and the ways they breed to have such desired characteristics in the future. How do farmers in your area breed animals and plants? What indigenous and modern breeding practices are there in your area? Breeding that involves male and female to produce offspring is sexual reproduction in animals or plants. Breeding is also the application of genetic principles in animal husbandry, agriculture, and horticulture to improve desirable qualities. Breeding can occur through selective breeding/artificial selection or natural selection. **BIOLOGY GRADE 11** FDRE-MoE ETHIOPIA **Selective breeding** is the selection of individual animals or plants that show the most desirable characteristics for the next generation in the breeding program. It is a scientific process of animals and plants to select and develop particular phenotypic traits (characteristics) by choosing which typically animal or plant males and females will sexually reproduce and have offspring together. Selective breeding utilizes the natural variations in traits that exist among members of any population. Plant breeding is the science of changing the traits of plants in order to produce desired characteristics. It has been used to improve the quality of nutrition in products for humans and animals. The goals of plant breeding are to produce crop varieties that boast unique and superior traits for a variety of agricultural applications. The most frequently addressed traits are those related to biotic and abiotic stress tolerance (resistance against drought, high temperature, salinity, flooding, and insect pest infestation). Plant breeding is also applied to improve grain or biomass yield, end-use quality characteristics such as taste or the concentrations of specific biological molecules (proteins, sugars, lipids, vitamins, fibers) and ease of processing (harvesting, milling, baking, malting, blending, etc). Plant breeding can be carried out through many different techniques ranging from simply selecting plants with desirable characteristics for propagation, to utilizing methods that make use of knowledge of genetics and chromosomes, to more complex molecular techniques. Some of them are mass selection, pure line selection and bulk selection. - Mass selection method: In mass selection, a large number of plants of similar phenotype are selected and their seeds are mixed together to constitute the new variety. Mass selection is the simplest form of plant breeding that was practiced in agriculture by early humans. - Pure line selection: In this method, a large number of plants are selected from self-pollinated crops and are harvested individually by which individual plant progenies from them are evaluated and best progeny is released as pureline variety - **Bulk method**: In this, F2 and the subsequent generations are harvested in mass or as bulk to raise the next generation. At the end, individual plants are selected and evaluated. **Animal breeding** consists of choosing the desired quality characteristics, selecting the breeding stock, and determining the breeding system. Humans have selectively bred plants and animals for thousands of years. Selective breeding involves choosing parents with particular characteristics to breed with each other to produce offspring with more desirable characteristics. The two types of selective breeding/artificial selection are: - **Inbreeding**: is inbreeding is the process of producing offspring through mating genetically similar organisms. After many generations of inbreeding, the offspring will be almost genetically identical and will produce identical offspring. When this happens, an organism is described as inbred or purebred. Pure breeds are animals with homogeneous appearance, behavior and other characteristics. Purebred breeding aims to establish and maintain stable traits that the animal can pass on to the next generation that could help to develop superior qualities. The negative consequence of inbreeding is that it makes the expression of undesired recessive traits in the family more likely. - Crossbreeding: is the process of producing offspring through mating two purebred individuals that come from different breeds, varieties, or even species. Crossbreeding involves breeding two unrelated individuals. For instance, crossbreeding of the local breeds with exotic sires. Crossbreeding is incompatible with the conservation of indigenous breeds. Figure 4.38 shows examples of selective breeding of sheep with long tails, with long horn sheep and wheat and Borena cattle and Camel breeds in Ethiopia. Figure 4.38 Examples of selective breeding of animals and plants in Ethiopia On the other hand, natural selection is the selection of certain traits without any human intervention. Plants and animals that are better adapted to their environment have a higher chance of survival and producing more offspring than less adapted plants and animals. BIOLOGY GRADE 11 163 FDRE-MOE ETHIOPIA ### Inquiry activity 4.32 Investigating breeding 1. Investigate the difference between artificial selection/selective breeding and natural selection with examples in your locality. Recall the lesson you learnt on Mendelian crosses discuss inbreeding and crossbreeding with examples. 2. What are the advantage and disadvantages of inbreeding and crossbreeding? Ethiopians have practiced breeding of animals and plants for the past many years and are still practicing selective breeding of seeds, fruits, cattle, goats and sheep. The following section deals with the indigenous knowledge used by Ethiopians in breeding animals and plants. #### 4.12.1 Indigenous knowledge of Ethiopian farmers Ethiopia is home for a large and diverse livestock and crop resources and favourable production environments. According to the Central Statistics Agency, CSA, 2020a, Ethiopia has the largest livestock population in Africa, with 65 million cattle, 40 million sheep, 51 million goats, 8 million camels and 49 million chickens in 2020. Ethiopia is one of the richest genetic resource centres in the world in terms of crop diversity. Crop plants such as coffee, safflower, tef, noug, anchote, enset, wheat, barley, sorghum, peas, linseed, castor, finger millet, lentil and oats are widely produced in Ethiopia. Production of crops and livestock accounts for the largest share of the economic contribution of the agricultural sector in Ethiopia. Five major cereals (teff, wheat, maize, sorghum, and barley) are the core of Ethiopia's agriculture and food economy. Ethiopia's crop agriculture and livestock production are complex, involving substantial variation in crops grown and livestock reared across the country's different regions and ecologies. Livestock rearing of sheep and goats and different crops in Ethiopia has been practiced under the traditionally extensive systems with indigenous knowledge preserved among farmers for many years. People in the community have their own accumulated knowledge about natural phenomena or events, challenges such as diseases and their effects on agriculture practices and living systems in their environment. They have their own indigenous knowledge and practices on how to combat environmental changes, diseases and plant and animal reproduction. They have indigenous knowledge on the selection of characteristics, breeding and management practices on their agricultural activities. For example, indigenous knowledge in selecting the desired quality based on growth rate, body size, resistance to disease and other environmental conditions. ## Tv. #### **Inquiry** activity 4.33 **Investigating practice of breeding** Visit farmers or agricultural institutions/centers and investigate how they practice the breeding of animals and plants? What is indigenous knowledge? What types of indigenous knowledge are there in your area used in the breeding of animals and plants from different varieties? How much is the indigenous knowledge useful when compared with the modern scientific knowledge. Which one is the most practiced breeding methods (inbreeding, crossbreeding, Report your investigation for your teacher. #### **Bioinformatics introduction** 4.13 After the successful completion of this section, the student will be able to: - Define bioinformatics - Describe the role of bioinformatics in biology ## Self-questioning Before starting this section, ask yourself this question "What do Ι about know bioinformatics and what do I want to learn from this section?" What is the contribution of bioinformatics to biological studies? Think about studying biology in the 21st century. In the era of information technology or the digital world, there is a need to find new ways of studying biology. Bioinformatics that considers the digital world into account is one of the modern ways of studying biology. Bioinformatics is a modern, growing hybrid field that links biology, computer science, and information technology to support the storage, organization, and retrieval biological data. It is the design, constructions and use of software tools to generate, store, **BIOLOGY GRADE 11** FDRE-MoE ETHIOPIA interpret and analyze data and information related to biology. Bioinformatics provides tools to comprehensively analyze and save large amounts of biological data that would be impossible to investigate without informatics-based
approaches. Bioinformatics has also become useful to improve the diagnosis and detection of diseases, to promote vaccine development by screening databases for pathogen genomes, and to increase our understanding of evolutionary processes through the analysis of nucleotide/protein sequence mutations. The field of bioinformatics incorporates three main areas: 1) genomics, 2) proteomics, and 3) systems biology. Genomics includes DNA sequence data, whereas proteomics deals with the function, shapes, interactions, and abundance of proteins. Systems biology that examines the extensive role of protein and DNA interactions on the function of cells, tissues, and organs, as a whole is the most recent and complex branch in the field of bioinformatics. Systems biology can describe the pathway of enzymes and their various metabolites by using computer data models. It can illustrate brain function by using computer images. # Inquiry activity 4.34 Studying bioinformatics Elaborate about bioinformatics with specific examples of its application in studying biology, e.g. DNA sequencing the process of determining the order of nucleotides within a DNA molecule. #### **Unit four summary** The genetic material of an organism is DNA that carries genetic information and passes it on from one generation to the next generation to perpetuate life. The genetic material in viruses is RNA. DNA is ladder like double helix material twisted into a spiral shape and composed of nucleotides made of a sugar, phosphate group and four types of nitrogenous bases Adenine (A), Thymine (T), Guanine (G) and Cytosine (C). RNA is a single strand composed of nucleotides made of sugar ribose, phosphates, and the nitrogenous bases adenine (A), guanine (G), cytosine (C) and uracil (U). In base pairing rules, 'A' pairs with 'T' and 'C' pairs with 'G' in DNA and 'A' with 'U' in RNA. The function of DNA is to store all of the genetic information that determines the characteristics of an organism, whereas the function of RNA is to synthesize protein and it is used as storage of genetic information in some viruses. DNA has an ability to copy itself by the process of replication. Cell division has made the growth and transfer of the information stored in the DNA from one cell to another cell and from generation to generation possible. There are two types of cell divisions: mitosis and meiosis. Mitosis is the division of somatic cells to produce two new, identical daughter cells at the end of series of steps. Meiosis is the division of sex cells. It occurs in two phases: meiosis I and Meiosis II and at the end produces four different daughter cells with haploid number of chromosomes due to crossing over or genetic recombination and reduction of chromosome numbers. Protein synthesis is the process of making proteins from amino acids through the process of Transcription and Translation. The process involves **DNA**, **RNA** (mRNA, tRNA and rRNA), amino acids, various **enzymes** and ribosome. During transcription, mRNA read instruction from DNA used to produce polypeptides during translation. Gregor Mendel, the Austrian monk, explained the mechanism of transfer of trait from one generation to the next generation and sometimes not and the principles of heredity. The pattern of inheritance of traits, which are controlled by a single gene with two alleles from parent to their offspring, iscalled Mendelian inheritance. Mendel conducted monohybride cross and dyhibrid crosses, and explained the two foundational principles of inheritance: The law of segregation, and the law of independent assortment. Gregor Mendel conducted a Monohybrid between cross homozygous dominant homozygous genotype and recessive genotype plants, which resulted in all heterozygote dominant genotype (F1 generation and crossed F1 with F1 and resulted F₂ generation with phenotypic ratio 3:1 and genotypic ratio 1:2:1 for all traits he studied. A test cross is used to determine the unknown genotype of a dominant phenotype by crossing unknown genotype (dominant phenotype) with known homozygous recessive genotype. The law of segregation states that copies of genes randomly separate or segregate during meiosis so that each gamete receives only one allele. On the other hand, the law of independent assortment states that separate genes for separate traits are passed on independently of one another from parents to the offspring. In humans and other mammals, sex is determined by sex chromosomes that determine whether an individual is male or female, designated by X and Y. Individuals having two X chromosomes (XX), homozygous for X, are females; individuals BIOLOGY GRADE 11 167 FDRE-MOE ETHIOPIA having one X chromosome and one Y chromosome (XY), heterozygous, are males. types of inheritance such as codominance, incomplete dominance, linkage and multiple alleles are called non-Mendelian Inheritance. When both alleles are expressed equally rather than a dominant allele taking complete control over a recessive allele, it is called co-dominance, whereas when an intermediate phenotype results in heterozygote, it is called dominance. Sex-linked is a trait influenced by genes located on the sex chromosomes, mainly X chromosome because chromosome is large and contains many more genes than the smaller Y chromosome. The phenotype of an organism can also be determined by environmental factors. An example is phenocopy, an environmentally induced phenotype of an individual. A pedigree shows how a gene that passes on from one generation to the next generation in a family determines the characteristics or genetically determined diseases in humans. It can also show whether a trait is an autosomal dominant, autosomal recessive or X-linked trait. A genetic disorder is a disease that is caused by a change or mutation in the body cells of an individual's DNA that passes on from parents to their children. It can be single gene disorders (autosomal dominant, autosomal recessive, x-linked), chromosomal or multifactorial disorders, which indicate that genetic testing and counseling is important. Genetic testing examines the presence of disorders on genetic materials and tells an individual about the likelihood and risk of passing genetic disorders on to their children, whereas genetic counseling involves checking the medical history and records of a family to order to conduct genetic tests. Then, it evaluates the results of these tests with regard to the genetic disorder to help parents understand and reach decisions about what to do next about the disorder. Gene therapy is the technique of the introduction of genes into the existing cells to modify a person's genes to prevent or cure a wide range of diseases through somatic gene therapy or Germ-line gene therapy Breeding is a scientific practice of sexual reproduction and the application of genetic principles that involve male and female to produce offspring in animals or plants. It involves crossbreeding and inbreeding. communities Local have accumulated knowledge about their environment and their practices particularly in agriculture by which the main activity for the majority of the people is to sustain their life. People in the community have their own indigenous knowledge and practices in selective breeding and on how to combat environmental changes, diseases, plant and animal reproductions. The development of technology has resulted in new science called bioinformatics, which is an information technology that uses software tools to support the storage, generation, organization, and retrieval of biological data, interpretation and analysis of biological information and data. #### **Unit four review questions** #### II. Multiple-choice questions | Direction: | Choose | the correct | answer from | among t | he given | alternatives. | |------------|--------|-------------|--------------|---------|----------|---------------| | | 011000 | | G. 10 11 011 | | 0 | artor rate to | - 1. The primary function of DNA and RNA are _____ and _____ respectively. - A. Storing information, making proteins - B. Making proteins, storing information - C. Making nucleotides, storing energy. - D. Storing energy, making nucleotides - 2. If one of the DNA strand has the nucleotide sequence of 5'-CGA TTG CTA-3', what would be the nucleotide sequence of on the second strand? - A. 5'-GCU AAC GAA-3' - C. 5'-GTT AGC GAT-3' - B. 3'-GCT AAC GAT-5' - D. 3'-CAA TCG GTC-5' - 3. During which step of cell division does crossing over occur? - A. Prophase II C. Prophase I B. Metaphase I - D. Metaphase II - 4. Assume that a homozygous black color (BB) is crossed with a homozygous white colour (bb). What is the probability that an offspring will have black color? - A. 25 percent C. 100 percent B. 50 percent - D. 75 percent - 5. Assuming that both parent plants in the diagram below are homozygous. Why would all of the f1 generation have yellow phenotypes? It is because: - A. The f1 genotypes are homozygous - B. Yellow is dominant over green - C. Both parents passed on yellow alleles - D. Yellow is recessive for the trait - 6. Pea plants were particularly well suited for use in Mendel's breeding experiments for all of the following reasons except that: - A. Peas show easily observed variations in a number of characters - B. It is possible to completely control mating between different pea plants. - C. Peas have an unusually long generation time. - D. Many of the observable characters that vary in pea plants are controlled by single genes - 7. Which parental genotypes could possibly have all four blood groups expressed in their offspring? - A. I^Bi and ii C. IAIB and ii B. IAIA and IAi - D. I^Ai and I^Bi - 8. Why are X-linked traits more common in males than in females? - A. All alleles on the X chromosome are dominant. - B. All alleles on the Y chromosome are recessive. - C. A recessive allele on the X chromosome will always produce the trait in a male. - D. Any allele on the Y chromosome will be codominant with the
matching allele on the X chromosome - 9. Hemophilia is an X-linked recessive disorder in humans. A hemophiliac man and a non-hemophiliac woman who has hemophilic son. What is their chance of having hemophilic daughter? A. 75% C. 50% B. 0% D. 25% 10. Assuming that equal ratio, if a mating has already produced 3 girls, what is the probability that the next 3 children will be boys. A. 1 C. 1/8 B. 1/2 D. 3 11. Two true-breeding stocks of pea plants are crossed. One parent has red, axial flowers and the other has white, terminal flowers; all F₁ individuals have red, axial flowers. If 1,000 F2 offspring resulted from the cross, approximately how many of them would you expect to have red, terminal flowers? (Assume independent assortment). **BIOLOGY GRADE 11 UNIT FOUR GENETICS** A. 65 C. 750 B. B. 190 D. 250 12. Protein synthesis includes which of the following two processes? A. Replication and transcription C. Transcription and translation B. Replication and cell division D. Replication and translation 13. If a portion of a messenger RNA molecule contains the base sequence A-A-U, the corresponding transfer RNA base sequence is C. T-T-C A. A-A-U B. G-G-T D. U-U-A 14. What is the role of tRNA during translation? A. Carry amino acids to the mRNA for correct placement into the protein chain B. bond to open the DNA strand to carry the code for protein synthesis out of the nucleus C. carry ribosomes to the site of protein synthesis D. break aparty mRNA and send it back to the nucleus so that it can be reused 15. In a species of rabbits, there are several alleles that control for coat color. The allele B results in a brown coat color. The allele b results in a beige coat color. The two alleles are codominant. What phenotype is a rabbit likely to display with the genotype Bb? A. All beige coat C. Brown coat with beige patches B. All brown coat - D. All white coat - 16. Which of the following events occurs during the metaphase of mitosis? - A. The nuclear membrane reforms around the chromosomes. - B. Chromosomes move to the middle of the cell, attached to microtubules. - C. Chromosomes begin to segregate and the enzyme separase cleaves the centromere - D. The chromosomes condense and the centrosomes move to opposite sides of the cell. - 17. If a plant with genotype AaBb is self-fertilized, the probability of getting AABB genotype will be (A and B are not linked) A. 1/2 C. 1/8 B. 1/4 D. 1/16 - 18. A form of vitamin D-resistant rickets, known as hypophosphatemia, is inherited as an X-linked dominant trait. If a male with hypophosphatemia marries a <u>normal female?</u> - A. All of their sons would inherit the disease - B. All of their daughters would inherit the disease - C. About 50% of their sons would inherit the disease - D. About 50% of their daughters would inherit the disease **BIOLOGY GRADE 11 FDRE-MoE ETHIOPIA** 19. Which of the following is the most likely explanation for a high rate of crossing-over between two genes? - A. The two genes are far apart on the same chromosome. - B. The two genes are both located near the centromere. - C. The two genes are sex-linked. - D. The two genes code for the same protein. - 20. In the pedigree below, squares represent males and circles represent females. Individuals who express a particular trait are represented by shaded figures. Which of the following patterns of inheritance best explains the transmission of the trait? A. Sex-linked dominant C. Autosomal recessive B. Sex-linked recessive - D. Autosomal dominant - 21. Which of the following is not an aspect of animal breeding? - A. Improve desirable qualities of breeds - C. Making diseased organisms B. Increasing the yield - D. Making disease resistance breeds - 22. What is the basic genetic effect of inbreeding? - A. Increased homozygosity C. Increased heterozygosity B. Decreased homozygosity - D. No effect on heterozygosity - 23. The desired varieties of economically useful crops are raised by - A. Vernalization C. Mutation B. Hybridization - D. Natural selection - 24. A plant breeder wants to develop a disease resistant variety. What should he do first? - A. Hybridisation C. Selection B. Mutation - D. Production of crop - 25. Which of the following type of animals breeding is used to develop a pure line in any animal? - A. Inbreeding C. Crossbreeding B. Outcrossing D. Hybridisation BIOLOGY GRADE 11 UNIT FOUR GENETICS 26. Which method of crop improvement can be practiced by a farmer, if he is inexpreinced A. clonal selection C. pure line selection B. mass selection D. hybridization 27. Which of the following marriage is not good for the offspring? A. Rh women and Rh + man C. Rh+ women Rh- man B. Rh woman Rh man D Rh+ women Rh+ man #### III. Short answer **Direction:** Write a short answer for each questions 1. What is the difference between law of segregation and law of independent assortment? Give example. - 2. If a pea plant with axial flower cross-pollinated with a plant with terminal flower, what would be the genotypic and phenotypic ratio of F1 and F2 generations? Show the cross using punnett square. - 3. To identify the genotype of yellow-seeded pea plants as either homozygous dominant (YY) or heterozygous (Yy), you could do a test cross with plants of which genotype? Draw the Punnett square that illustrates the test cross. - 4. What fraction of the offspring of the cross AaBb X AaBb would show the dominant phenotypes for both genes? - 5. Three babies are born in the hospital on the same day. Baby X has type B blood; Baby Y has type AB blood; Baby Z has type O blood. Use the information in the following table to determine which baby belongs to which couple. (Assume that all individuals are homozygous dominant for the gene.) | Couple | Father | Blood type | Mother | Blood type | |--------|--------|------------|--------|------------| | 1 7/// | Mr. 1 | В | Ms. 1 | AB | | M | Mr. 2 | Α | Ms. 2 | A | | 311 | Mr. 3 | 0 | Ms. 3 | В | BIOLOGY GRADE 11 173 FDRE-MOE ETHIOPIA # **Unit Five: The human body systems** # **Unit learning outcomes** After the successful completion of this unit, the student will be able to: - 1. Explain the structure and function of the musculoskeletal system. - 2. Identify the structures and functions of the male and female reproductive systems. - 3. Explain ways to prevent or reduce the spread of STIS/ HIV. - 4. Explain family planning strategies. - 5. Examine the effect of alcohol use, chewing Khat, cannabis and other drug uses on the normal functioning of the musculoskeletal and reproductive systems. - 6. Identify harmful practices that affect human reproductive health. The human body is a biological machine made of body systems and groups of organs that work together to produce and sustain life. The human organ systems include the integumentary system, skeletal system, muscular system, lymphatic system, respiratory system, digestive system, nervous system, endocrine system, cardiovascular system, urinary system and reproductive systems. However, in this unit, we shall discuss only the **musculoskeletal** and **reproductive systems**. # 5.1. Human Musculoskeletal Systems At the end of this section, the student will be able to: - Explain the musculoskeletal systems - List the muscle and skeletal systems - Explain the function of musculoskeletal systems # **Self-Questioning** Before starting this section, ask yourself this question: "what do I know about the musculoskelal system and what do I want to learn from this section?' The human musculoskeletal systems are organ systems that give humans the ability to move. Muscles and skeletal systems are musculoskeletal systems that provide the human body with shapes and forms and protect the vital organs of musculoskeletal systems. Musculoskeletal systems bind organs together, support stability, allow bodily movements and produce blood cells for the body (bone marrow) and stores minerals (Figure 5.1). Musculoskeletal system is a body structure made up of bones of the skeletons, muscles, cartilages, tendons, ligaments, joints and connective tissues. Musculoskeletal system is a body structure made up of bones of the skeleton, muscles, cartilage, tendons, ligaments, joints, and connective tissues. The human musculoskeletal system comprises: - Muscles keep bones in place and enable movements. - Joints and cartilages connect bones to bones and prevent them from rubbing against each other. - Tendons connect muscles to bones. - 4. **Connective tissues**: internal skeletal system parts favoring positions and movements - 5. **Ligaments** are fibrous connective tissues that attach bone to bone. Figure 5.1 Human musculoskeletal structures # 5.1.1. Types of muscles What are the functions of muscles? The human muscular systems include about 700 muscles that make up half of the human body weight and are responsible for the movement of the human body. Human muscles are discrete organs made of skeletal muscle tissues, blood vessels, tendons and nerves found attached to the bones of the skeletal system. The human body is composed of three types of muscles: - 1. Cardiac muscles - 2. Skeletal muscles - 3. Smooth muscles #### 1. The Cardiac muscles The cardiac muscle (heart muscle) forms a thick middle layer between the outer layer of the heart wall (pericardium), and the inner layer (endocardium) with blood supplied to circulate via the coronary circulation. The cardiac muscle is an involuntary striated muscle composed of tissues of the wall of the heart called **myocardium.** Individual cardiac muscle cells are joined together by intercalated discs and are encased by collagen fibers to form the extracellular matrix (Figure 5.2). Figure 5.2 Cardiac muscles #### 2. The Skeletal Muscle The skeletal muscles arranged in opposing systems around joints are attached to bones and are composed of 30 to 40% of total body mass (Figure 5.3). They allow the body to perform a wide range of movements and functions such as voluntary controlled systems on works. The skeletal muscle fibers
innervated by a single motor axon are called a **motor unit**. BIOLOGY GRADE 11 177 FDRE-MOE ETHIOPIA Figure 5.3 Skeletal muscles ### 3. The Smooth Muscles The smooth muscles are involuntary, non-striated and unconsciously controlled muscles that control the flow of substances within the lumens. The Smooth muscles are muscles found in the walls of hollow organs: the stomach, intestine, bladder, uterus and walls of passageways of the blood and lymph vessels, respiratory tracts, urinary and reproductive systems, in the eyes and the ciliary muscles (Figure 5.4). The smooth muscle cells of the skins are the erector of pill causing hair to stand erect in response to cold, heat or fear. Figure 5.4 Smooth muscles # Lab-based activity 5.1: Laboratory works Objectives: observe and identify three cell types Materials Microscopes, cardiac, skeletal, and smooth muscles specimens, and Knives. #### Methods - Prepare specimen for all the three muscle types - Set a wet mounting of each specimen taken from each muscle cell - Observe the specimen samples under the microscope - Write a lab report on the protocol. #### Assessments What are the differences among the three types of muscles? Draw a diagram of each type of muscle Explain the relationships between the structures and functions of muscles. ### 5.1.2. Mechanism of actions of skeletal muscles What are mechanisms of action? Mechanisms of action of muscles are the process of activations of muscle cells to generate tension or contract for movements. Skeletal muscles are bundles of muscle fibers with single large cells formed by the fusion of many individual cells during development. Most of the cytoplasm consists of myofibrils of cylindrical bundles of two types of filaments of thick filaments of myosin and thin filaments of actin where each is each organized as a chain of contractile unit called sarcomeres. Actin and myosin are both proteins found in every type of muscle tissue where the thick myosin filaments and thin actin filaments work together to generate muscle contractions and movement. Myosin is a type of molecular motor that converts chemical energy released from ATP into mechanical energy used to pull the actin filaments along causing muscle fibers to contract and generate. Actin filaments, together with myosin are responsible for many types of cell movements. The most noticeable form of movement is muscle contraction, which has provided the model for understanding actin-myosin interactions and the motor activity of myosin molecules. BIOLOGY GRADE 11 179 FDRE-MOE ETHIOPIA Troponin is a complex system of three regulatory proteins integral to muscle contraction in skeletal muscles (Figure 5.5). In a relaxed muscle, tropomyosin blocks the attachment site for the myosin cross bridge Figure 5.5 Actin and myosin in action Mechanism of actions in muscles: - 1. **Muscle activation:** the motor nerve stimulates an action potential (impulse) to pass down a neuron to the neuromuscular junction and stimulates the sarcoplasmic reticulum to release calcium into the muscle cell. - 2. Muscle contraction: Calcium floods into the muscle cells bound with troponin allowing actin and myosin to bind, in which the actin and myosin cross bridges bind and contract, using ATP as energy that all cells use to fuel activity. - 3. **Recharging:** ATP is re-synthesized (remanufactured), allowing actin and myosin to maintain a strong binding state. preventing contraction. The binding of myosin to actin causes cross bridge formation and contraction of the muscle. Figure 5.6 Types muscle contractions **Relaxation:** relaxation occurs when stimulation of the nerve stops and pumps Calcium back into the sarcoplasmic reticulum breaking the link between actin and myosin. Actin and myosin return to unbound state causing the muscle to relax, but relaxation failure occurs if ATP is no longer available. In natural movements, the activity of locomotors and muscle contractions is multifaceted to produce changes in length and tension in a time-varying manner. Muscle contraction occurs when the two-inter-digitizing filaments, the thin actin and the thick myosin filaments, slide pass each other. There are three types of muscle contractions: - 1. **Isometric**: does not change the length (Figure 5.6a). - 2. **Concentric**: shortening the muscle (Figure 5.6b). - 3. **Eccentric**: lengthening the muscle fibers (Figure 5.6c). # 5.1.3. The human axial and appendicular skeletons What are human skeletons? The human skeletal system is a complex structure with two distinct divisions composed of fused and individual bones supported by ligaments, tendons, muscles, and cartilage. Humans are born with over 300 bones, but many of the bones fuse between birth and the end of maturity and remain with the average number of 206 bones in an adult skeleton. Bones have three different layers made from three different kinds of cells. The general structure of bones is a combination of a protein called collagen and a molecule called calcium phosphate that weave together to form a strong and lightweight structure. Bones are composed of four types of cells. These are: - **Osteoblasts** involve in new bone formation. - Osteocytes are mature bone cells that help to mature bones of newborns. - Osteoclasts break down bones and help them to form into correct shapes. - **Osteoprogenito**r are important in repair of fracture. Based on their shapes, there are four different types of bones in the human body: - **1. Long bones** have long and thin shapes. - 2. Short bones have squat and cubed shapes. - **3. Flat bones** have flattened and broad surfaces. - **4. Irregular bones** have shapes that do not conform to the above three types. - **5. Sesamoid bones** are small, flat bones and are shaped similarly to a sesame seed Table 5.1 General classifications of bones | Types of bones | Names and parts | | | | |-----------------|--|--|--|--| | Long bones | Femur and tibia (bones longer than wide) | | | | | Short bones | Carpus (bone of wrists) | | | | | Flat bones | Cranium (skull), ilium (pelvis), sternum, and ribs | | | | | Irregular bones | Vertebrae, sacrum, coccyx, temporal, mandible, palatine, nasal, etc. | | | | | Sesamoid bones | Small sesame seed-like bones that are embedded in the muscles | | | | #### **Functions of bones:** - 1. **Support body and helping move:** bones hold up body **stability**, keep from collapsing to the ground, movement and body posture. - 2. **Protecting the internal organs:** bones keep organs to be safe from hard impacts, punctures, and other forms of injury (ribs protect the heart and lungs, and the skull protects the brain). - 3. **Producing blood cells:** certain types of bones make platelets, red blood cells, and white blood cells inside bones. - 4. **Storing and releasing fat:** certain bones store fat and release when body needs energy. - 5. **Storing and releasing minerals:** bones store necessary minerals when the levels are too high in the blood and release minerals when the body needs them (calcium, phosphorus, and vitamin D). ### **Inquiry based activity 5.2 Discussion** - Visit a traditional bone healer (Wogesha), discuss the following and present them to the class. - Traditional healing process, techniques and experience of bone fractures - Local materials used and cares - Compare the indigenous knowledge and orthopedic practices of healing. - Present the results to the class, being in a group of five students. #### 1. The axial skeleton The axial skeleton is the one that consists of the skull, trunk, and pelvis bones of the medial core of the body. The skull is composed of the cranium bones fitting together at joints (sutures) and the facial bones forming the lower front part, consisting of the eye, the ear, the nose, and the mouth cavities. Axial skeleton includes the jaw, or mandible, the upper jaw, or maxilla, the zygomatic, or cheekbone, and the nasal bone. The rib cage (thoracic cage) forms the thorax (chest) portion of the body and consists of 12 pairs of ribs with costal cartilage and the sternum. Parts of the axial skeleton **Functions** Number of **bones Skull (**Cranium 8+Facial 14) 22 It holds and protects the brain. Ossicles (both ears, 3+3) Auditory 6 Hyoid (neck) Holds the head Thoracic (rib cage) 24 It protects the heart and lungs. Thorax (sternum) Bind and handle the abdomen 1 Vertebral column 26 Holds up human body **Total bones** 80 Table 5.2 Parts of the axial skeleton parts # 2. The appendicular skeleton An appendicular skeleton is the portion of the skeleton that consists of 126 bones out of a total of 206 bones and supporting appendages. It includes skeletal elements, limbs, shoulder-supporting girdle, pectoral, pelvic girdle, and joined appendages. An appendicular skeleton is involved in the locomotion of lower limbs and manipulation of objects in the upper limbs. It also consists of six major regions (Table 5.3). | Appendicular skeleton parts | Number of bones | | | |-----------------------------|-----------------|--|--| | Shoulder girdles | 4 | | | | Pelvis | 2 | | | | Arms and forearms | 6 | | | | Thighs and legs | 8 | | | | Hands | 54 | | | | Feet and ankles | 52 | | | | Sum | 126 | | | Table 5.3 Parts of the appendicular skeleton Total number of bones in the human body = axial + appendicular = 80 + 126 = 206 BIOLOGY GRADE 11 183 FDRE-MOE ETHIOPIA The following figure shows both axial and appendicular skeleton (Figure 5.7). Figure 5.7 Axial and appendicular skeletons #### 5.1.4. Joints What are joints? Joints are the parts of the body where two or more bones meet with binding tissues and allow the body to produce movements. ### 5.1.4.1 Types of joints - **1. The ball and socket joint:** the rounded head of one bone sits in the cup of another bone to **p**ermit movement in all directions (shoulder and hip joints). - **2. Hinge joints:** like a door, a joints that opens and closes in one direction along one
plane only (elbow and knee joints). - 3. Condyloid joints: joints that do not rotate but allow movements (finger and jaw). - **4. Pivot joints** are rotary or trochoid joints in which one bone swivels in a ring (ulna, radius, and neck). - **5. Gliding joints:** a plane joint that allows only limited movement by slipping smooth surfaces over one another (wrist joint). - **6. Saddle joint:** enables movement back and forth, side to side, and cannot rotate (thumb base). Figure 5.8 Major human joints # **Inquiry-based activity 5.3 Project Work** - 1. Construct the human musculoskeletal system from locally available materials. - 2. Robotic system - 3. Label each part using scientific terms and count the bones. - 4. Define the following terms and present them to the class. - The muscular system - The skeletal system - The functions of the musculoskeletal system BIOLOGY GRADE 11 185 FDRE-MoE ETHIOPIA # 5.2 The reproductive system At the end of this section, the student will be able to: - Describe female and male reproductive systems - Explain gametogenesis - Explain menstrual cycle - List types contraceptive mechanisms and uses - Describe infertilities in males and females - Explain the spread, prevention or treatments methods of STIS/ HIV # **Self-questioning** Before starting this section, ask yourself this question: "what do I know about the reproductive system and what do I want to learn from this section?' The human reproductive system is the functional male and female reproductive organ systems. The function of the human reproductive system is to produce and deposit sperms in males and egg cells in females. Internal fertilization by sexual intercourse occurs when the male inserts his penis into a female's vagina and Why is the human reproductive system necessary for the continuity of human species? ejaculates sperm that pass through the cervix into the uterus and the fallopian tubes for the fertilization of the ovum (egg). # **5.2.1.** Human reproductive system (Male and Female) ### The male reproductive systems The male reproductive system contains the external genital organs (penis, testes, and the scrotum) and internal parts (prostate gland, vas deferens, and urethra) that work together to produce **sperm** (male gametes), male sex hormones, and other components of the semen (Figure 5.9). ### 1. The penis The penis is the male copulatory organ. The penis contains soft, spongy tissue as well as muscles, fibrous tissue, veins, arteries, and the urethra. These allow the penis to perform its functions. It has urinary and sexual functions. The sexual function of the penis can be described as two stages: erection and ejaculation. An erection is the stiffening of the penis caused by sexual arousal and/or physical stimulation. It is also normal for erections to occur during sleep and upon waking. An erection occurs when there is an increased flow of blood into the corpus cavernosa and corpus spongiosum. During an erection, arteries supplying the erectile tissues will dilate (widen), causing the penis to engorge (fill) with blood. The engorgement compresses the veins through which blood usually exits the penis. This "traps" the blood and helps sustain the erection. #### 2. Urethra The urethra is a tube that connects the urinary bladder to the urinary meatus for the removal of urine from the body. In males, the urethra allows for the passage of urine from the bladder to the outside of the body (urination) and is also responsible for the expulsion of sperm during ejaculation. ### 3. The scrotum The scrotum is a sack of thick skin that protects the testes and controls the temperature of the testes for suitable sperm creation. It contains seminal vesicles, vas deferens, testicles (testes), and prostate gland that constitute all the remaining components of the male reproductive system. #### 4. Testes **Testes** are oval pair bodies found in the scrotum with two primary functions: Production of **testosterone** or male sex hormones and **sperm** (spermatogenesis). Table 5.4 summary of male reproductive structures and their function | Structure | Function | | | |-------------------------|---|--|--| | testes | produce sperm cellsproduce the hormone testosterone | | | | seminiferous
tubules | produce immature sperm cells | | | | epididymis | matures and stores sperm cells in coiled tubules | | | | vas deferens | • carries sperm from the epididymis to its junction with the urethra | | | | seminal vesicle | • secretes fructose into the semen, which provides energy for the sperm | | | | prostate gland | • secretes an alkaline buffer into the semen to protect the sperm from the acidic environment of the vagina | | | | Cowper's gland | • secretes mucus rich fluids into the semen that may protect | | | | urethra | carries semen during ejaculationcarries urine from the bladder to the exterior of the body | | | | penis | deposits sperm into the vagina during ejaculation contains the urethra | | | BIOLOGY GRADE 11 187 FDRE-MOE ETHIOPIA Figure 5.9 Male reproductive systems # **The Female Reproductive Systems** The female reproductive system includes the ovaries, fallopian tubes, uterus, vagina, accessory glands, and external genital organs (Figure 5.10). Its functions include producing gametes called eggs, secreting sex hormones (such as estrogen), providing a site for fertilization, gestating a fetus if fertilization occurs, giving birth to a baby. The internal reproductive organs include: Labia majora: The labia majora ("large lips") enclose and protect the other external reproductive organs. During puberty, hair growth occurs on the skin of the labia majora, which also contain sweat and oil-secreting glands. - minora: labia Labia The minora ("small lips") can have a variety of sizes and shapes. They lie just inside the majora, and surround labia openings to the vagina (the canal that joins the lower part of the uterus to the outside of the body) and urethra (the tube that carries urine from the bladder to the outside of the body). This skin is very delicate and can become easily irritated and swollen. - Bartholin's glands: These glands are located next to the vaginal opening on each side and produce a fluid (mucus) secretion. - **Clitoris**: The two labia minora meet at the clitoris, a small, sensitive protrusion that is comparable to the penis in males. The clitoris is covered by a fold of skin, called the prepuce, which is similar to the foreskin at the end of the penis. Like the penis, the clitoris is very sensitive to stimulation and can become erect. The internal reproductive organs include: - **Vagina**: The vagina is a canal that joins the cervix (the lower part of the uterus) to the outside of the body. It is also known as the birth canal. - Uterus (womb): The uterus is a hollow, pear-shaped organ that is the home to a developing fetus. The uterus is divided into two parts: the cervix, which is the lower part that opens into the vagina; and the main body of the uterus, called the corpus. The corpus can easily expand to hold a developing baby. A canal through the cervix allows sperm to enter and menstrual blood to exit. - **Ovaries**: The ovaries are small, ovalshaped glands that are located on either side of the uterus. The ovaries produce eggs and hormones. - tubes: These are narrow tubes that are attached to the upper part of the uterus and serve as pathways for the ova (egg cells) to travel from the ovaries to the uterus. Fertilization of an egg by sperm normally occurs in the fallopian tubes. The fertilized egg then moves to the uterus, where it implants into the uterine lining. Table 5.5 Summary of female reproductive structures and their function | Structure | Function | | | | |---|---|--|--|--| | produce the hormones estrogen and proges site of ova (egg cell) development and ovulation | | | | | | fallopian tubes | carry the ovum from the ovary to the uterus | | | | | (oviducts) | usually the site of fertilization | | | | | fimbria | sweep the ovum into the oviduct following ovulation | | | | | uterus (womb) • pear-shaped organ in which the embryo and fete • involved in menstruation | | | | | BIOLOGY GRADE 11 189 FDRE-MOE ETHIOPIA | | separates the vagina from the uterus | | | | |--------|--|--|--|--| | cervix | holds the fetus in place during pregnancy | | | | | | dilates during birth to allow the fetus to leave the uterus | | | | | vagina | extends from the cervix to the external environment provides a passageway for sperm and menstrual flow | | | | | | functions as the birth canal | | | | Figure 5.10 Female reproductive system organs The main external structures of the female reproductive system include: # TV. # Inquiry based activity 5.4 Model construction and #### discussion - Construct models of the human reproductive systems - Label parts of the reproductive systems and organs # 5.2.2 Gametogenesis What is gametogenesis? Gametogenesis is the process where of formation and development of specialized generative cells, gametes (oocytes/sperm), from bipotential primordial germ cells (Figure 5.11). Gametogenesis is a process where a haploid daughter cell (n) is formed from a diploid mother cell (2n) through meiosis. This process is called spermatogenesis in male that produces spermatozoa and oogenesis in female that produces ova. ### Spermatogenesis Spermatogenesis is the process by which haploid (n) spermatozoa develop from germ cells in the seminiferous tubules of the testis. Male gamete production starts at puberty and takes place in the testis. The testes also produce
the male hormone called androgen (testicular hormone). Germinal epithelium lines the seminiferous tubules. The majority of cells here are cuboidal and called primordial germ cells or PGCs. These immature male germ cells undergo successive mitotic and meiotic divisions to produce sperms. The diploid primordial germ cells are present in the lining of the seminiferous tubules of testis. Some cells which are tall and somatic are called Sertoli cells. They help in the nourishment of the developing sperms and are also called nurse cells. At sexual maturity, the undifferentiated primordial germ cells or PGCs of seminiferous tubules divide several times by mitosis to produce large number of sperm mother cells or spermatogonia. Spermatogonia are diploid and possess 46 chromosomes. They then go through mitotic division and generate primary spermatocytes which undergo meiosis to form two haploid cells known as secondary spermatocytes. Each secondary spermatocyte has 23 chromosomes. Second meiotic division occurs in secondary spermatocytes, resulting in production of four equal and haploid spermatids. The spermatids are transformed into spermatozoa (sperm) by the process of spermiogenesis. These develop into mature spermatozoa, also known as sperm cells. Maturation of the sperm cells takes place in the epididymis where it is secreted in the form of semen during puberty. ### **Oogenesis** Oogenesis is the development of female egg cells found in the outermost layers of the ovaries germ cell oogonium and ends with one to two million cells in the embryogenesis. It undergoes the primary oocyte development that begins with meiotic division. Oogenesis arrests division as it develops in the follicle and gives rise to a haploid (n) cell oocyte of a smaller polar body called **oogenesis**. The following figure (Figure 5.11) shows Spermatogenesis and oogenesis. Figure 5.11 Spermatogenesis and oogenesis Gametogenesis = Spermatogenesis and Oogenesis # **Inquiry based activity 5.5 Home Works** - 1. Draw a diagram of the gametogenesis structure - 2. Describe the differences between spermatogenesis and oogenesis - 3. Present the homework to the class and discuss ### Phases of the menstrual cycle The menstrual cycle is the process of discharge of blood and other things through the vagina of a woman every month from puberty to menopause excluding pregnancy. It is a natural periodical process that brings changes in the female reproductive system which is responsible for the pregnancy. - It includes changes that occur in the ovary and the uterine walls simultaneously as a result of changes in the level of hormones in the blood. - Two significant events occur within the female reproductive organs: the first is the release of a single ovum from one of the ovaries and, the second is that the uterine endothelium is prepared for the plantation of a fertilized ovum. What are events of the menstrual cycles? If the ovum is not fertilized, the lining is released which results in menstruation. Menstruation occurs when the uterine lining sheds, resulting in blood that exits the body via the vagina. The duration of the cycles averages about 28 days. However, the period that might differ in different women can range from 20 days to 45 days. The difference in the duration is associated with decreased fertility. Events of the menstrual cycles are phases of follicular, ovulation, luteal and menstruation. Phases (events) of menstrual cycles are: - The follicular phase: is the event when the anterior pituitary produces and secret estrogens called follicles stimulated hormones (FSH) that inhibit the secretion of negative feedback to prevent the growth of other follicles. - The ovulation phase: an event when ovulation takes place in the midway through the cycle (days 12-14) and estrogen stimulates the anterior pituitary to secret luteinizing hormones (LH) as positive feedbacks to surge the release of an egg (secondary oocyte) as ovulation. - The Luteal phase: rupture follicle develops into a slowly degenerating corpus luteum to secret high levels of **progesterone** and lower levels of **estrogen**. Both estrogen and progesterone act on the uterus to thicken the endometrial lining in preparation for pregnancy and inhibit the secretion of FSH and LH to prevent any follicle from developing. - The Menstruation phase: in the menstrual cycle, if fertilization occurs, the embryo develops, implants in the endometrium and release hormones to sustain the corpus luteum. If fertilization fails, the corpus luteum degenerates, estrogen and progesterone levels drop and forms corpus albinos after two weeks. The endometrium is not maintained longer and its layer is eliminated from the body as menstrual blood or period (Figure 5.12). BIOLOGY GRADE 11 193 FDRE-Moe ethiopia Figure 5.12 Menstrual cycle ### Feedbacks to menstrual cycle: - Estrogen hormone promotes the secretion of the ovulation of the menstrual cycle. - During days 12–14, estrogen provides positive feedbacks to the hypothalamus and pituitary gland to accelerate the production of estrogen leading to ovulation. - Progesterone involves in the menstrual cycle and promotes gestation or the carrying of a fetus to maintain the endometrium of the uterus. - The uterus walls dilation continue by contracting and stretching until the birth of a baby. Table 5.6 Menstrual cycle | Phases | Days | Events | | |--|-------|--|--| | Menstrual Phase | 1- 4 | Menstruation occurs | | | Follicular Phase | 5-13 | Follicle matures and endometrium develops | | | Ovulation phase 14 Ovary releases an egg | | Ovary releases an egg | | | Luteal Phase | 15-28 | Follicle becomes the corpus luteum and endometrium prepares for an egg | | # **Inquiry activity 5.6 Homeworks** - 1. How do positive and negative feedbacks control menstrual cycles - 2. Why menstruation period is absent during pregnancy - 3. Describe the roles of LH and FSH in cycling menstruation. - 4. List the phases of menstrual cycles. - 5. Explain the difference between menarche and menopause in menstrual cycles # 5.2.2 Positive and negative feedbacks to control the menstrual cycle What is feedback in menstrual cycle? A feedback mechanism is a physiological regulation system in the body that works to return the body to its normal internal state, commonly known as homeostasis. The "positive feedback" is the process in which the end products of an action cause more of that action to occur in a feedback loop. In a menstrual cycle, it is a period (days 12–14) during when estrogen stimulates the hypothalamus of the brain to release Gonadotropin Releasing Hormones (GnRH) that stimulates the anterior **pituitary** gland to secrete **Luteinizing Hormones (LH)** and **Follicle Stimulating Hormones (FSH).** Hormones are chemicals that coordinate different body functions by carrying messages through our blood to organs, muscles and other tissues. # 1. Luteinizing Hormone (LH) LH is a gonadotrophic hormone for regulating the function of the testes in men and ovaries in women. - In men, it stimulates cells in the testes to produce testosterone to support sperm production. - In women, it carries out different roles in the two halves of the menstrual cycle. In weeks one to two of the cycle, the hormone stimulates the ovarian follicles to produce the female sex hormone estradiol. Around day 14 of the cycle, a surge in LH levels causes the ovarian follicle to rupture and release a mature oocyte (egg) from the ovary called ovulation. For the remainder of the cycle (weeks three to four), the remnants of the ovarian follicle form a corpus luteum to produce progesterone required to support the early stages of pregnancy. The rise of the levels LH is a negative feedback and too much LH is an indicator of infertility. # 2. Follicle Stimulating Hormone (FSH) FSH is a hormone that plays a role in sexual development, reproduction and affects ovaries and testicles. Women are born with all the eggs and the ovarian reserve consists of one to two million eggs at birth of which around 400,000 eggs reach puberty, 400 eggs mature and ovulate throughout our reproductive years. The brain releases the hormone at the beginning of each cycle to stimulate ovaries to grow follicles and eggs for ovulation. The progesterone maintains the uterine lining or thickness of the uterus wall and lesser it for happening pregnancy. The rise in FSH stimulates the growth of the follicle in the ovary, produces the increasing amounts of estradiol and reduces the release of gonadotrophin hormone as **negative feedback**. During each menstrual cycle, is a rise in FSH secretion in the first half of the cycle (follicular phase) stimulates follicular growth in the ovary leading to ovulation. The ruptured follicle forms a **corpus luteum** that produces high levels of progesterone (luteal phase) and at the end of the cycle, the *corpus luteum* breaks down, progesterone production decreases and the next menstrual cycle begins as follicle stimulating hormone levels start to rise again. In **negative feedbacks,** the mechanism of biochemical pathway turns off, the egg fails of fertilization, the corpus luteum dies, **progesterone levels drop** and the uterine lining breaks down and the woman is having a period or menstruation. The positive feedback leads to ovulation and the negative feedback leads to menstruation (Figure 5.13). Figure 5.13 Positive and negative feedbacks schema of the menstrual cycle # 5.2.3 Fertilization and pregnancy #### 1. Fertilization What is the advantage of having a large number of sperm cells? Fertilization is the union of human egg and sperm cells in the ampulla of the fallopian tube to produce a **zygote** (Figure 5.14). The process of fertilization occurs when 23 sets of chromosomes from a spermatozoon and 23 sets of chromosomes from an egg cell fuse together. The fertilized egg (zygote) divides repeatedly as
it moves down the fallopian tube to the uterus. About six days after fertilization, the embryo attaches to the lining of the uterus, usually near the top. This process is called **implantation** and it is completed within nine or ten days. Figure 5.14 Fertilization ### 2. Pregnancy Pregnancy or gestation period is the period in which the fetus develops inside a woman's womb or uterus. Pregnancy lasts about 40 weeks (280 days) to delivery counted from the last menstrual period. A pregnancy with more than one fetus at a time is called a multiple pregnancy (twin or triplet). The followings are signs and symptoms of pregnancy: - Missed periods, tender breasts and morning sickness (nausea, vomiting) - Hunger and frequent urination - Pregnancy test confirms pregnancy BIOLOGY GRADE 11 197 FDRE-MOE ETHIOPIA # **Inquiry based activity: 5.7 Homeworks** Write short essays on the following concepts and present the to the class - Unwanted pregnancy - Gestation age - Signs and symptoms of pregnancy - Twins (identical and fraternal) # **5.2.4 Mechanism of action of contraceptives** What are contraceptives? Contraception n refers to the intentional process of preventing pregnancy through the use of various hormonal drugs, devices, sexual practices, chemicals, and surgical procedures. People use contraception for a range of reasons such as to plan family size, reduce pregnancy-related risk, reduce teenage pregnancies, have healthy babies, prevent sexually transmitted diseases like HIV/AIDS, and to balance the population growth with economic growth. Based on their mechanisms of action, contraceptives can be categorized as **barrier or non-barrier** contraceptives. # Barrier mechanism of contraceptives: Devices that provide a physical barrier between the sperm and the egg. Examples include the male condom, female condom, diaphragm, and cervical cap. **Condoms (male and female)** are the only contraceptive methods that helps prevent sexually transmitted infections (STIs) (Figure 5.15). Figure 5.15 Male and female condoms **Diaphragm** is a small and soft silicon dome placed inside the vagina to stop sperm from entering the uterus where it forms a physical barrier between the man's sperm and the woman's egg like a condom (Figure 5.16). Figure 5.16 Diaphragm 2. Non-barrier contraceptives: Types of contraceptive methods such as chemical barriers or spermicides, oral contraceptive pills, intrauterine devices (IUD), hormonal implants, hormone injections, post pill and contraceptive ring. **Chemical barriers or spermicides** are sperm-killing substances, available as foams, creams, gels, films or suppositories, which are often used in female contraception in conjunction with mechanical barriers and other devices (Figure 5.17). Figure 5.17 different spermicide contraceptives **Oral contraceptive pills** are combined hormonal pills with Oestrogen and progesterone. Oral contraceptive pill (COC) is a type of birth control that is designed to be taken orally by women. The pill contains two important hormones: progesterone and estrogen. The pill prevents the ovaries from releasing an egg each month (ovulation). It also thickens the mucus in the neck of the womb, so it is harder for sperm to penetrate BIOLOGY GRADE 11 199 FDRE-MOE ETHIOPIA the womb and reach an egg. It thins the lining of the womb, so there is less chance of a fertilized egg implanting into the womb and being able to grow. Progesterone-only pills (POP) prevent pregnancy by thickening the mucus in the cervix to stop sperm reaching an egg. The progesterone-only pill can also stop ovulation. The progesterone-only pill needs to be taken every day to work. Figure 5.18 Oral contraceptive pills The copper-coated intrauterine device (IUD) is a small T-shaped device made from material that contains (coated) progesterone hormone or plastic and copper. The IUD fitted inside a woman's uterus by trained healthcare providers does not allow the sperm to fertilize the egg and prevent pregnancy. It may also make it harder for a fertilized egg to implant in the uterus as it thickens the cervical mucus and thins the uterine lining (Figure 5.19). Figure 5.19 Intrauterine device (IUD) Contraceptive implant is a small flexible plastic rod placed under the skin in your upper arm by a doctor or a nurse and lasts for three years releasing the hormone progesterone into the bloodstream to prevent pregnancy (Figure 5.20). Figure 5.20 Contraceptive implant **Contraceptive injection** contains a synthetic version of the hormone progesterone DEPO Provera, which is a well-known brand name for medroxyprogesterone acetate, a contraceptive injection. It prevents the body from producing its own hormones and releasing eggs from the ovaries. However, an estimated 6% of people using Depo-Provera will get pregnant (Figure 5.21). Figure 5.21 Contraceptive injection **Post pill** is a hormonal oral contraceptive tablet used as an emergency contraceptive to prevent pregnancy within 72 hours. It contains the hormone levonorgestrel, a progestin that prevents ovulation, block fertilization or keep a fertilized egg from implanting in the uterus. Post pill is an emergency oral contraceptive pill (ECP) used to prevent pregnancy after unprotected sex (Figure 5.22). Figure 5.22 Emergency contraception pill **Contraceptive ring (vaginal ring)** releases a continuous dose of the hormones estrogen and progesterone into the bloodstream to prevent pregnancy (Figure 5.23). Figure 5.23 Contraceptive Ring **Sterilization:** is a permanent method of contraception, suitable for people who are sure they never want children or do not want any more children. Sterilization procedures for women **tubal ligation**. The procedure for men is called **vasectomy** (Figure 5.24). Tubal ligation prevents an egg from traveling from the ovaries through the fallopian tubes and blocks sperm from traveling up the fallopian tubes to the egg. Vasectomy blocks or cuts each vas deferens tube, keeping sperm out of your semen. Sperm cells stay in the testicles and are absorbed by the body. Starting about 3 months after a vasectomy, the semen won't contain any sperm, so it can't cause pregnancy. Figure 5.24 Sterilization: Vasectomy (left), Tubal ligation (right) # **Inquiry-based activity 5.8: Discussion and presentation** Visit your nearby health center professionals and discuss - Mechanisms of using contraceptives - Advantages and disadvantages of each contraceptives - Which of the contraceptive mechanisms are common in your area and why? - Traditional systems of pregnancy control methods and compare with the modern ones Table 5.6 Summary of contraceptives | Methods | Failure rate | Mode of action | Advantage | Disadvantage | |--|--------------|---|---|---| | Oral
Contraceptives | 0.3-5 | Inhibit ovulation;
may affect
endometrium and
cervical mucus and
prevent implantation | Highly effective
and regulate
menstrual cycle | Minor discomfort in some women, should not be used by women over age 35 who smoke | | Injectable
contraceptives
Depo-Provera | About 1 | Inhibit ovulation | Effective and long-lasting | Irregular menstrual bleeding, fertility may not return for six to 12 months after contraceptive is discontinued | | Intrauterine device (IUD) | 1-1 | Stimulates inflammatory responses and prevent implantation | Provides
continuous
protection, highly
effective for
several years | Cramps, increased menstrual
flow and risks of pelvic
inflammatory diseases and
infertility; not recommended
for women who have not
had a child | | Spermicides,
foams, jellies and
creams | 3-20 | Chemically kill sperm | No known side effects; can be used with a condom or diaphragm to improve efficacy | Messy, must be applied before intercourse | | Diaphragm
Contraceptives | 3-14 | Mechanically blocks entrance to cervix | No side effects | Must be inserted prior to intercourse and left in place for several hours afterward | | Condom | 2.6-14 | Mechanically prevent sperm from entering vagina | No side effects;
some protection
from STIs and
HIV | Slightly deceased sensation for male and could break (torn) | | Sterilization
Tubal ligation | 0.04 | Prevent ovum from leaving uterine tube | Most reliable method | Requires surgery and considers permanent | | Vasectomy | 0.15 | Prevent sperm from leaving vas deferens | Most reliable method | Requires surgery and considers permanent | # **5.2.5 Causes of infertility in humans** Infertility is the inability of a person to reproduce by a natural way. Female infertility is the inability to get pregnant (conceive) after unprotected sex. Male infertility refers low sperm production, abnormal sperm function, or blockages that prevent the delivery of sperm and consequently protect the ejaculation of adequate healthy sperm cells. BIOLOGY GRADE 11 203 FDRE-MoE ETHIOPIA ### 5.2.6.1 Causes of infertility in women Females are fertile for a natural fertility period before and during ovulation whereas they are infertile for the rest of the menstrual cycle. The cause of female infertility is ovulatory problems manifested by the sparse or absent menstrual periods (Figure 5.25). Causes of infertility in females: - Thyroid problems: it prevents ovulation by making both overactive and underactive. - ➤ Pelvic surgery complications include fallopian tube damage and scarring, as well as cut ovaries - Cervical mucus problems: harder mucus does not let sperms to swim into vagina. - Fibroids: non-cancerous growths in or around the womb affect fertility. - **Endometriosis:** growths in the womb lining the endometrium block
the ovaries. - **Pelvic inflammatory diseases** cause infections of the upper female genital tract. - **Sterilization** is a choice not to have any more children. - Medicines and drugs: their uses and misuses have side effects that cause infertility. Examples: - 1. Drugs like marijuana, cocaine, and heavy cannabis use tobacco. - 2. Medicines such as blood pressure medications, anti-depressants, and anti-psychotics. - 3. Misuses of drugs and alcoholic drinks Figure 5.25 Causes of female infertility ### 5.2.6.2 Infertility in men Male infertility is the production of low, abnormal, and dysfunctional sperm and blockages that prevent the adequate delivery of sperm. Chronic health problems, illnesses, injuries, inherited disorders, hormonal imbalances, dilated veins around the testicle, or a condition that blocks the passage of sperm and contribute to male infertility. Symptoms of male infertility: - 1. Immotile sperms facing harder to swim to the egg - 2. Discomfort, pain and swelling or a lump in the testicle area - 3. Surgery of the groin, testicle, prostate, penis, or scrotum - 4. Lower sperm count (fewer than 15 million sperm per milliliter of semen or a total sperm count of less than 39 million per ejaculate). Risk factors linked to male infertility: - Smoking tobacco, using alcohol, and drugs - > Being overweight and exposed to toxins - > Having repeated past or present STD infections - Overheating and trauma to the testicles The following figure shows causes of male infertility with percentage (Figure 5.26). Figure 5.26 Causes of male infertility # Inquiry based activity 5.9: Group discussion Visit your nearby health center and discuss - Infertility in females and males - Causes of infertilities in females and males # 5.2.6 The major sexually transmitted infections (STIs) in Ethiopia How do we prevent STIs? Sexually transmitted Infections are communicable diseases primarily transmitted through sexual contact from a sick person to a healthy person. # 5.2.7.1 Types of sexually transmitted infections and preventions More than 20 types of sexually transmitted infections or diseases spread through unprotected sexual intercourses. The major causative agents or pathogens, are bacteria, viruses, and parasites. #### **Bacterial infections diseases** # A. Bacterial Vaginosis Bacterial vaginosis is a type of vaginal inflammation caused by the overgrowth of bacteria naturally found in the vagina. Bacterial vaginosis increases the risk of developing a post-surgical infection and causes infections of the uterus, fallopian tubes, and infertility. - Causative agent: bacterial vaginosis - Means of transmission: sexual contacts - **Symptoms: v**aginal discharge (thin, gray, white or green), foul-smelling or fishy vaginal odor, vaginal itching and burning during urination. - **Prevention/treatment**: protective sexual contact and medical treatments - The prevalence of Bacterial Vaginosis in Ethiopia ranges from 2.8–19.4%. ### B. Chlamydia Chlamydia is a common sexually transmitted infection (STI) that's caused by a bacteria called Chlamydia trachomatis (*C. trachomatis*). Chlamydia infections spread through sexual contact, when vaginal fluid or semen containing the bacteria that causes chlamydia travels from one person to another. Figure 5.27 Diseases of Chlamydia ## **Inquiry activity 5.10 Investigating Chlamydia disease** Form groups and conduct research on the causative agent, mode of transmission, symptoms, and treatments/preventions of Chlamydia disease from a library or by contacting a physician in your area, then present your findings in class. #### C. Syphilis Syphilis is a life-threatening disease that affects the brain, nervous system, eyes, heart, and several other organs and develops through four stages of symptoms (Table 5.7). Table 5.7 Stages of syphilis development | Stages | Timing | Symptoms | | | | |------------------------|---|--|--|--|--| | Primary
syphilis | 3-4 weeks after exposure. | Formation of non-itchy and painless chancers on genital skin and mucosa. | | | | | Secondary syphilis | 4-8 weeks after the appearance of a primary chancer. | Rash on hands and soles of feet. | | | | | Latent syphilis | Early (< 1 year) after infection. Late (>1 year) after infection | No symptoms (asymptomatic) | | | | | Tertiary/late syphilis | 1-10 years after infection. | Gummatous lesions, cardiovascular syphilis, late neurological complications. | | | | • Causative agent: *Treponema pallidum* Means of transmission: sexual contacts • **Symptoms:** form sores around the genitals, anus, rectum or mouth tend to last 3-6 weeks, appearing as a non-itchy rash of rough, brownish or red spots on the palms of the hands, soles of the feet, lesions in the mucous membranes, the mouth, vagina or anus. Swollen lymph nodes, hair loss, headache, weight loss, muscle fatigue, fever that appear around 21 days after infection. Prevention/treatment: protective sexual contact and medical treatments Figure 5.28 Diseases of Syphilis #### D. Gonorrhea Gonorrhea is an infectious disease of the bacterium *Neisseria gonorrhea*. It is highly contagious and can lead to life-threatening complications if not well treated. Its transmission is through touches of an infected area of the body, thrives in warm, moist parts of the body (vagina, penis, mouth, rectum and eye). It spreads during sexual contact. - Causative agent: the bacterium Neisseria gonorrhea - **Means of transmission:** spreads by sexual contacts - **Symptoms**: painful urination and abnormal discharge from the penis or vagina. Men may experience testicular pain and women may experience pain in the lower stomach. In some cases, gonorrhea has no symptoms. - **Prevention/treatment**: protective sexual contact and medical treatments Figure 5.29 Diseases of Gonorrhea #### E. Chancroid Chancroid is a curable sexually transmitted disease caused by the infection of bacterial species Haemophilus ducreyi. Chancroid is a highly contagious, painful necrotizing genital ulcer accompanied by inguinal lymphadenopathy. Figure 5.30 Disease of Chancroid #### **Viral infections diseases** #### A. Genital herpes # Inquiry activity 5.11 Investigating Chancroid disease Work in groups to investigate the causative agent, mode of transmission, symptoms, and treatments/prevention of Chancroid disease from a library or by contacting a physician in your area, and then present your findings in class. Genital herpes is a sexually transmitted infection caused by two types of the herpes simplex virus (HSV). These are HSV-1 and HSV-2. **Human Simplex Virus 1 (HSV-1)** is a virus that affects the mouth and spreads through saliva or a herpes-related sore around the mouth. #### Human Simplex Virus 2 (HSV-2) affects the genital, anal, and mouth and is transmitted through sexual intercourse. Figure 5.31 Genital herpes disease #### **B.** Genital warts Genital warts are sexually transmitted infections caused by the human papillomavirus (HPV). They can cause pain, discomfort, and itching. The human papillomavirus (HPV) is a group of viruses that affect the skin, mucous membranes, throat, cervix, anus, and mouth. It increases the risk of cervical and throat cancer and spreads through sex. # Inquiry activity 5.12 Investigation genital herpes and genital warts disease Work in groups to investigate the causative agent, mode of transmission, symptoms, and treatments/prevention of genital herpes and genital warts disease from a library or by contacting a physician in your area, and then present your findings in class. Figure 5.32 Disease of HPV #### C. Molluscum contagiosum Molluscum contagiosum is a contagious viral skin infection caused by a poxvirus called *Molluscum* contagiosum virus that affects both adults and children. - Causative agent: Molluscum contagiosum virus - Means of transmission: by skin to skin contacts - Symptoms: a small round bumps and indents on skin disappearing soon - **Prevention/treatment**: protective self-hygiene Figure 5.33 Disease of Molluscum contagiosum #### D. Human Immunodeficiency Virus (HIV) Human Immunodeficiency Virus (HIV) is a virus that attacks the human immune system cells that fight against the body infections. HIV makes a person vulnerable to other infections and diseases. Without treatment, HIV infection advances in stages, getting worse over time gradually destroys the immune system and eventually causes acquired immunodeficiency syndrome (AIDS). Human Immunodeficiency Virus (HIV) belongs to a class of viruses known as **retroviruses.** It attacks a specific type of immune system cell called CD4 helper cells or T cells and Ribosome, Golgi apparatus and endoplasmic reticulum organelles. HIV weakens the body, makes the body harder to fight off infections and destroys. Figure 5.34 HIV structure #### Key **HIV capsid**: HIV's core that contains HIV RNA **HIV envelope**: the outer surface of HIV. **HIV enzyme**: proteins that carry out steps in the HIV life cycle. There are three stages of HIV infection: - 1. **Acute HIV infection** is the earliest stage from 2 to 4 weeks after infection and people show flu-like symptoms, such as fever, headache, and rash. At this stage, HIV multiplies rapidly and spreads throughout the body. The virus attacks and destroys the infection-fighting CD4 cells (CD4 T lymphocytes) of the immune system. - 2. **Chronic HIV infection** is the second stage from 1 to 7 years. It is also called **asymptomatic** HIV infection or **clinical latency** at which HIV continues to multiply in the body and usually advances to AIDS. - 3. **AIDS** is the final stage from 10 years and above. This is the most severe stage of HIV infection in which HIV severely damages the immune system and the body cannot fight off opportunistic infections such as tuberculosis and tumors, and the number of **CD4** cells decreases. People at AIDS stage have
a CD4 count of fewer than **200 cells/mm3**. Without treatment, people with AIDS typically survive about 3 years (Figure 5.35). The healthy immune system's **CD4** counts are between **500** and **1600 cells/mm3**. Figure 5.35 HIV progress BIOLOGY GRADE 11 211 FDRE-MOE ETHIOPIA ## **Inquiry activity 5.13 Investigating HIV/AIDS** Be in two groups, investigate the causative agent, means of transmission, symptoms, and treatments/prevention of HIV/AIDS from a library or by asking a physician in your area, and then present your findings in class. In which stage of HIV, does the transmission to other person is highest? Why? #### E. Hepatitis B Hepatitis B is a viral infection that attacks the liver and causes both acute and chronic liver diseases. Once a person is infected with Hepatitis B, the virus remains in the semen, blood and other bodily fluids. People with acute **hepatitis B** develop liver cancer diseases **cirrhosis** and hepatocellular **carcinoma** that causes liver failure leading to death. Vaccines prevent hepatitis B disease effectively and make safe. The World Health Organization (WHO) estimated that about 296 million people were living with chronic **hepatitis B** infections in 2019 with 1.5 million new infections each year and **820 000** deaths from **cirrhosis** and **hepatocellular carcinoma** (liver cancer). - Causative agent: viruses - Means of transmission: - Sexual contact with infected persons - Uses of non-sterile injections - > Puncturing the skin with sharp objects infected with virus - Blood and bodily fluids - **Symptoms:** yellowing of the skin and eyes (jaundice), dark urine, extreme fatigue, nausea, vomiting and abdominal pain - Prevention/treatment: protective sexual contact and safe from any contact of bodily fluids or contaminations Figure 5.36 Disease of Hepatitis B #### **Parasites** Among parasites, trichomoniasis and pubic lice are the most prevalent causative agents of sexually transmitted infections #### A. Crabs (Pubic lice) **Crabs** are pubic lice attaching to pubic hair and sometimes affect the hair in the armpits, moustache, beard, eyelashes or eyebrows. Pubic lice spread during close physical and sexual contact and are transmitted via shared towels or bed linen. Figure 5.37 Pubic lice ## Inquiry activity 5.14 Investigating crabs (Pubic lice) disease Be in groups, conduct an investigation into the causative agent, means of transmission, symptoms, and treatments/preventions of crabs (Pubic lice) from a library or by asking a physician in your area, and then present your findings in class. #### **B.** Trichomoniasis Trichomoniasis is a common sexually transmitted infection caused by the parasite *Trichomonas vaginalis* (Figure 5.38). Figure 5.38 Trichomoniasis vaginalis - Causative agent: Trichomonas vaginalis - Means of transmission: sexual contact - **Symptoms:** in women (a large amount of a thin, often foul-smelling discharge from the vagina which might be clear, white, gray, yellow or green; genital redness, burning and itching; pain with urination or sex; discomfort over the lower stomach area). In men (itching or irritation inside the penis, burning with urination or after ejaculation, discharge from the penis). - **Prevention/treatment**: protective sexual contact and medical treatments #### C. Scabies Scabies are contagious skin diseases that develop due to a mite (Figure 5.39). Scabies spreads from person to person through direct skin-to-skin contact. It can also be spread by using clothing, sheets, towels or furniture that has touched an infected person's skin. Scabies is considered as STI because it often spreads during sex. Figure 5.39 Diseases of Scabie ## **Inquiry activity 5.15 Investigating scabies disease** Be in groups, conduct an investigation on the causative agent, means of transmission, symptoms, and treatments/prevention of scabies disease from a library or by asking a physician in your area, and present it in the class. ## 5.2.8. Epidemiology of STIs in Ethiopia What is an Epidemiology? **E**pidemiology is the study of the transmission causation, outbreak, surveillance, monitoring of a disease and the application of this study to the control and treatment of the disease.. Epidemiology of STIs is the systematic study of sexually transmitted infections, identify and understand the causes, symptoms and ways of transmission. Even though there is little information on the incidence and prevalence of STIs in Ethiopia, the problem of STIs is generally believed to be similar to that of other developing countries. About 1.4 million people are infected with STIs every day. In Ethiopia, the highest reported rates of STIs are found among 15–24-year olds. ## 5.2.8.1 Risks of STIs epidemic in Ethiopia #### **Risks of STIs epidemic include:** Anyone who is sexually active risks some degree of exposure to an STD or STI. Factors that may increase that risk include: - Having unprotected sex. Having sex with an infected partner who isn't wearing a latex condom significantly increases the risk of getting an STI. Improper or inconsistent use of condoms can also increase risk. - Having sexual contact with multiple partners. The more people you have sexual contact with, the greater your risk. - Having a history of STIs. Having one STI makes it much easier for another STI to take hold. - Being forced to engage in sexual activity. Dealing with rape or assault is difficult, but it's important to see a doctor as soon as possible to receive screening, treatment and emotional support. - **Misuse of alcohol or use of recreational drugs**. Substance misuse can inhibit your judgment, making you more willing to participate in risky behaviors. - **Injecting drugs**. Needle sharing spreads many serious infections, including HIV, hepatitis B and hepatitis C. - Being young. Half the new STIs occur in people between the ages of 15 and 24. #### Activities 5.16: Discuss in a group of five and present to class Invite professionals from a nearby health center and discuss - STIs and Transmissions - Epidemic risks of STIs - Preventive cares of STIs - HIV/AIDS transmission risks ## 5.3 Harmful traditional practices After the successfully completion this section, the student will be able to: - Describe harmful traditional practices - Explain the harmful traditional practices on reproductive systems - Understand how harmful traditional practices affect women #### **Self-questioning** Before starting this section, ask yourself this question: "what do I know about harmful traditional practices that affects reproductive health and what do I want to learn from this section?' ### **5.3.1 Harmful traditional practices** What are harmful traditional practices? Harmful traditional practices that affect the physical and mental health of individuals are actions against the rights of people. Both men and women have the right to live free from harm, oppression, discrimination and violence (harmful practices). In Ethiopia, the currently recorded harmful traditional practices has accounted for about 20 of which 50% deals with **mutilation** of skins and related parts, whereas the female genital mutilation (FGM) alone has accounted for 73% of the practices. 5.3.1.1 Harmful traditional practices affect reproductive health. - 1. **Early marriage** is forcing underage girls to get married based on cultural norms to perpetuate poverty. It has a wide-ranging impact on girls, causing them to drop out of school, become pregnant, and face long-term health risks. - 2. Kidnapping or is abduction to make the girl a wife unwillingly. - Gender-based violence, or any form of unwanted sexual contact (sexual abuse or harassment), or even violence within a relative or marriage. 4. **Female Genital Mutilation (FGM)** is one of the harmful traditional practices that involve the partial or total removal of external female genital organs. ## **Inquiry based activity 5.17: Discussion** Visit a nearby health center, discuss the following and present to the class - Female genital mutilation - Early marriage - Sex abuse - Massaging the abdomen of a pregnant woman - Marriage by abduction ## 5.4 Family planning After the successful completion of this section, the student will be able to: - Define family planning - Explain the benefits of family planning - Discuss the side effects of family planning ## **Self-Questioning** Before starting this section, ask yourself this question: "what do I know about family planning and what do I want to learn from this section?" What is family planning? Family planning is the ability to anticipate and attain a desired number of children, the spacing and timing of births, and the materials of individuals and couples to establish a family. Family planning deals with issues related to marital situation, career considerations, financial position and the number of children and a choice of a woman wishing to have or no children. Family planning is concerned with ensuring the resources required for raising the children, time, social, financial, and environmental conditions. ## 5.4.1 Risks related to the lack of family planning The risk of maternal health means that a mother requires care during pregnancy, childbirth, and the postpartum period. BIOLOGY GRADE 11 217 FDRE-MOE ETHIOPIA Both early and late motherhood have increased the risk that teenagers could face a higher risk of life complications and deaths. - When mothers suffer from illness, get sick or have health problems, the whole family could be threatened - Complications of pregnancy and childbirth leads to abortions, disability and lower incidence of deaths. Figure 5.40 Family planning schemes ### 5.4.2 Family planning actions The family calendar includes: - Prevention of unwanted pregnancy - Safe family from STIs, counseling plans and fertility management - Adequate resources for couples to prevent unwanted pregnancy - Waiting at least 6 months after a miscarriage or abortion - Adoption as another option used to build a family. - Birth control
and assisted reproductive technology - Adjustment of the family plan calendar to the natural menstrual cycle Does your family have a family plan calendar? Figure 5.41 Menstrual cycle calendar #### 5.4.3 Family planning services - Pregnancy testing and counseling - Pregnancy- achieving services (preconception health) - Basic counseling on infertility - Counseling on sexually transmitted diseases - Breast and pelvic examinations - Breast and cervical cancer screening ## **Inquiry based activity 5.18: Discussion and presentation** Visit a nearby family planning unit or health office and discuss - Family planning - Family plan calendar - Reproductive health ## 5.5 Effects of alcohol use, chewing Khat, cannabis and other drug uses on STIs transmission and unwanted pregnancy After the successful completion of this section, the student will be able to: - Describe the effects of drinking alcohol - Explain the side effects of chewing Khat - Discuss that using drugs and others affects lifestyles ## Self-Ouestioning Before starting this section, ask yourself this question: "what do I know about the effects of drugs on human health and what do I want to learn from this section?' #### 5.5.1 The effects of alcohol uses Heavily alcohol use affects the lifestyles of humans. The normal blood alcohol limit for euphoria is 0.1%, but the increase in alcohol intake damages many parts of the human body functions. Alcohol use has the following negative effects: BIOLOGY GRADE 11 219 FDRE-MOE ETHIOPIA • Too much intake of alcohol causes acute effects on parts of our bodies. For example, a higher concentration of blood alcohol (0.25 to 0.30%) causes sleepiness and confusion. - Prolonged excessive alcohol intake increases dementia (poor nutritional status). - Alcohol damages the brain (vitamin deficiencies) and the liver (causing cirrhosis). - Heavy alcohol drinking causes a J-shaped legs, colorectal and colon cancer, violence, traffic accidents and death. - Gulping up more alcohol causes a coma and death. - Alcoholic drinks cause 6.2% of males' and 1.1% of females' deaths globally. - Alcohol drinking is associated with risky sex and transmission of HIV. Figure 4.42 Effects of alcohol on human body ## 5.5.2 Effects of chewing Khat Khat is a shrubby plant (*Catha edulis*) that people chew its leaves as a recreational stimulant and a psychoactive drug. It has become a popular chewable cosmopolitan leaf among users living in Ethiopia and widespread in the Horn and Eastern Africa, Europe, and North America. In Eastern Ethiopia, it is chewed by nearly 30% of adolescent girls and over 70% of adolescent boys. There are about twenty million people worldwide who chew Khat leaves. When khat is chewed, it stimulates the central nervous systems of human beings because the leaves of Khat contain a stimulant drug called **cathinone.** Chewing Khat leaves has the following negative effects: - 1. Hypertension, stomatitis, esophagitis, gastritis, and constipation. - 2. Acute coronary syndrome (coronary artery spasm) and myocardial infarction - 3. Metabolic disorders, diabetes mellitus, hepatitis, and liver cirrhosis. - 4. Impotency or loss of sexual drive in libido among aphrodesia (male users) Table 5.8 Effects of using Khat leaves | Khat leaves | Effects of chewing | |-------------|--| | Immediate | Alertness, Arousal, Concentration, Confidence, Constipation | | term | Euphoria, Friendliness, Hyperactivity, Increased blood pressure, Increased heart rate, Insomnia, Psychosis, suppressed appetite, Talkativeness, thought disorder, Verbosity etc. | | Long | Depression, infrequent hallucinations, impaired inhibition, increased risk of myocardial infarction (heart attack), Psychosis in extreme cases in the genetically predisposed and oral cancer leading to death in indeterminate terms. | ## Inquiry activity 5.19 Investigation on effect of Khat Have you observed people drinking alcohol and chewing khat in your area? If so, have you noticed any problems like physical, psychological, or economic problems among those people? If so, why? If not, why not? Conduct a debate on the benefits and harms of drinking alcohol and chewing khat in your area. #### 5.5.3 Effects of drug uses Drugs are biochemical components mostly extracted from some plant species. Some drugs intermittently affect the body and the brain whereas some drugs have long-lasting consequences and permanent health hazards. #### 1. Marijuana Marijuana is a drug prepared from dried leaves and flowers of a plant called Marijuana plant (Cannabis sativa), which is stronger than any other form with high potency strains known as sinsemilla or hashish and extracts. Marijuana harms the brain, breathing system, heart, child development, and muscular system coordination. Figure 5.43 Cannabis sativa **BIOLOGY GRADE 11 FDRE-MoE ETHIOPIA** #### 2. Cocaine Cocaine is an addictive stimulant drug made from the leaves of the coca plant *Erythroxylum coca* native to South America. Cocaine harms the cardiovascular system, breathing system, gastrointestinal system, and nervous system. Figure 5.44 Erythroxylum coca #### 3. Heroin Heroin is a very addictive drug made from morphine, a psychoactive (mind-altering) substance taken from the resin of the seedpod of the **opium poppy.** Similarly, heroin has also negative effects on our health. Figure 5.45 Papaver somniferum #### 4. Inhalants Inhalants are chemicals that can be found in ordinary household or workplace products that people inhale on purpose to get in high mood. In fact, chemicals found in the products can change the way the brain works and cause other problems in the body. Generally, drugs have the following side effects - Increasing the risk of illness and infection - Heart conditions range from abnormal heart rates to heart attacks, collapsed veins, and blood vessel infections from injected drugs. - Nausea and abdominal pain lead to changes in appetite and weight loss. - Increased strain on the liver that puts the person at risk of significant liver damage or liver failure. - Seizures, stroke, mental confusion, and brain damage are all possibilities. - Problems associated with memory, attention, and decision-making, which make daily living more difficult People suffering from drug and alcohol addiction have a higher risk of unintentional injuries, accidents, and domestic violence incidents. The high prevalence of HIV infections, syphilis, and genital ulcer is due to unprotected sex fueled by the use of crack cocaine. Sexually active adolescents are at a high risk of contracting sexually transmitted infections, including HIV (Figure 5.46). Figure 5.46 Effects of drug uses #### **Inquiry activity 5.20 Investigation** Be in groups, investigate the short-term and long-term effects of drugs such as marijuana (cannabis), cocaine, heroin, and inhalants on the health of human beings, and then present your findings in class. ## **Unit five summary** The human skeletal system consists of 206 various types of bones, cartilage, joints, ligaments, tendons and connective tissues. The primary functions of the skeletal systems are locomotion, support to the body and the protection of internal organs (brain, heart and lungs). Bones that store minerals (calcium (99%), iron, magnesium and phosphorus are responsible for the production of red blood cells, platelets and most white blood cells. The functions of the muscular systems are movements, joint stabilization and heat protection, maintenance of posture and facilitation of blood circulation. The skeletal muscles connected to the bones and work hand-in-hand with the skeletal system to control voluntary movements such as walking and running. Smooth muscles (stomach, intestines, bladder and uterus) are involuntary muscles that are responsible for the contraction of hollow muscles. The cardiac muscle is an involuntary muscle found only in the heart and facilitates the circulation of blood by pumping to the major arteries and out into the body via the circulatory systems. The human reproductive system dealing with both male and female reproduction systems includes gametogenesis (gamete formation) fertility and infertility. The male reproductive system discusses the male reproductive organs including the penis, urethra, testes that make sperm and produce the hormone testosterone. The female reproduction system is the body parts including vagina, cervix, ovary, uterus, the menstruation cycles and both positive and negative feedbacks. In relation to reproduction, the unit briefs the mechanisms of uses contraceptives, sexually transmitted infections (STI) and diseases, causative agents, treatment or preventions. Family planning is an access to ensure safe human right. It is central to gender equality and women's empowerment and a key factor in reducing poverty. In developing regions, about 218 million women are suffering from lack of using safe and effective family planning methods for reasons ranging from the lack of access to information or services to the lack of support from their partners or communities. Family planning is the ability of individuals and couples to anticipate and attain their lifestyles with family formation and to have children or not. Family planning is a very important action that anticipates the futurity of the young generation on how to sustain all living forms and family formation with pertinent necessities to work and live successfully. interferes with Alcohol the brain's communication pathways and affects the way the brain works. It changes mood and behavior and makes harder to think clearly and move with coordination. Drinking over a long time damages the heart and causes cardiomyopathy (stretching and dropping of heart muscle), arrhythmias (irregular heartbeat), stroke and high
blood pressure. Heavy drinking takes a toll on the liver and leads to a variety of problems and liver inflammations including steatosis or fatty liver, alcoholic hepatitis, fibrosis and cirrhosis. Alcohol causes the pancreas to produce toxic substances that can eventually lead to pancreatitis, a dangerous inflammation and swelling of the blood vessels in the pancreas that prevents proper digestion. Cathinone is illegal in some countries since it has stimulant effect when chewed as drug class similar to the leaves of the coca plant used for making cocaine. Uses of Khat increase respiration, tends to elevate blood pressure, heart arrhythmias and dilated pupils. A regular use of Khat can also cause tooth decay, gum disease, ulcers and constipation. Drug use can cause short and long-term serious health hazards effects possibly irreversible. Drugs affect mainly the central nervous systems and cause flatness, depression and exhaustion and hallucinogens or distorting the sense of reality. ## **Unit five review questions** #### Part I. True or false Items **Instructions:** write true if the statement is correct and false if not. - 1. Musculoskeletal system composes of only skeletons. - 2. Muscular system comprises of cardiac, skeletal and smooth muscles. - 3. The three types of muscle contractions are concentric, isometric and centric muscle fibers. - 4. The source of blood cells is bone marrows. - 5. Joints are binding tissues connecting individual bones to allow movements. - 6. The saddle joints are in between the carpal and metacarpal. - 7. Bones compose of Yellow and Red marrow. - 8. The skull protects the human brain. - 9. The rib cages protect the lung. - 10. The skull is made of the cranium bones. #### Part II. Multiple-choice Test Items if the statement is not correct. **Instructions:** choose the correct answer from the given alternatives - 1. What mineral makes bones strong? - A. Oxygen - B. Iron - 2. What are the two bones in the lower arm? - A. Radius and ulna - B. Tibia and Fibula - 3. The purpose of white blood cells is to - C. Carry oxygen - D. Protect against infection - C. Calcium - D. Zinc - C. Femur and humerus - D. Mandible - C. Speed up digestion - D. All 4. Which of the followings is a hinge joint? A. Shoulder C. Knee B. Hip D. None 5. What is a fibrous connective tissue that attaches bone to bone? A. Cartilage C. Ligament B. Tendon D. Rib 6. Which one is the hip joint? A. Hinge joint C. A and B D. All B. Ball and Socket joint 7. Muscles attached to bones by A. Cartilage C. Ligament B. Tendon D. Tissues 8. One of the following is not a part of the male reproductive system. A. Penis C. Uterus B. Testes D. Scrotum 9. Which of the following is not a part of the female reproductive system? C. Sperm duct A. Ovary D. All B. Vagina 10. What are the male sex cells? C. Scrotum A. Sperm cells B. Sperm ducts D. Vagina 11. The male sex cells made in A. Testes C. Penis B. Sperm ducts D. Ovary 12. The female sex cell is A. Cilia C. Cervix B. Egg cells D. Sperm cells 13. How long does the menstrual cycle take? A. 5 days C. 28 days **B.** 14 days D. 30 days **BIOLOGY GRADE 11** STUDENT TEXTBOOK | 14. The character of an ovulation is | | |--|---| | A. The release of a mature egg cell | | | B. The loss of the lining of the uteru | us | | C. The joining of male sex cell and t | female sex cells | | D. Fertilization | | | 15. What is substance that passes through | n the placenta to the baby? | | A. Oxygen | C. Blood | | B. Carbon dioxide | D. Food | | 16. How long is gestation in humans? | | | A. 28 days | C. 9 years | | B. 40 weeks | D. 11 Years | | 17. Which changes due to happen during | puberty to boys and girls? | | A. Hips widen | C. Underarm hair grows | | B. Facial hair grows | D. Sperm production | | 18. STIs are most common inage gro | oups. | | A. Young and adults of ages 18-3 | 35 C. People of ages 60 and older | | B. People of ages 36 – 45 | D. All | | 19. The overall number of cases of STIs is | S: | | A. Rising | C. Constant | | B. Falling | D. All | | 20. As far as a person has no symptoms | s of STI, he/she | | A. Cannot pass on STI | C. A and B | | B. Don't have STI | D. None | | 21. Which of the following is a cause for \$ | STIs in women? | | A. Pelvic inflammatory disease | C. Ectopic pregnancy | | B. Higher risk for cervical cance | er D. All of the above | | 22. Which of the following sexually transm | nitted infection (STI) is caused by bacteria? | | A. Gonorrhea | C. A and B | | B. Syphilis | D. All | | 23. One of the symptoms of genital herpe | s is | | A. Burning in the genital area | C. A and B | | B. Painful blisters in the genital ar | ea D. None of the above | | 24. Which one of the human organs untre | ated syphilis affects? | | A. Heart | C. Liver | | B. Brain | D. A and B | | 3///// | | | 25. Which of the followings is another type of STIs? | | |--|-------------------------------------| | A. Chancroid C. N | Molluscum contagiosum | | B. Scables D. A | All of the above | | 26. It is one of the protective measures to lower the ris | sk of getting an STI: | | A. Use of male condoms | | | B. Eliminating multiple sex partners | | | C. Delay with having sexual relations as long as p | possible | | D. All of the above | | | 27. Which of the listed contraceptives requires prescrip | tions? | | A. Birth control pill C. Dia | aphragm | | B. Contraceptive patch D. Al | I of the above | | 28. What do male condoms offer that other forms of bir | rth control do not? | | A. Least chance of failure C. Che | eapest to use | | B. Best protection against STIs D. All | | | 29. Besides the condom, which one is another barrier n | nethod of birth control? | | A. Diaphragm C. W | /ithdrawal | | B. IUD | AH | | 30. Which type of intrauterine device (IUD) is available | ? | | A. Copper C. I | Hormonal | | B. Titanium D. A | and C | | 31. Which one is a possible side effect of birth control p | oills? | | A. Nausea | C. Headaches | | B. Irregular bleeding | D. All | | 32. How long is the vaginal ring left in place? | | | A. Months C. 3 | Weeks | | B. 2 Weeks D. 1 | week | | 33. Which of the methods is a natural family planning? | | | A. Basal temperature C. Trackin | g the menstrual cycle on a calendar | | B. Tracking changes in cervical mucus D. All | | | 34. Which of the methods of sterilization is permanent? | | | A. Tubal sterilization C. A | and B | | B. Vasectomy D. | No | | | | | 35. One of the FGM commonly practiced | d in Ethiopia is | |--|--| | A. Circumcision | C. Infibulations | | B. Excision | D. Clitoridectomy | | 36. How can you solve the problem of u | underage marriage of girls? | | A. Awareness creation | C. Education | | B. Law | D. All | | 37. Gulping up more alcohol causes | | | A. Toxicities | C. Does not affect | | B. Coma and death | D. All | | 38. Chewing Khat causes | | | A. Hypertension, stomatitis, esop | phagitis, gastritis and constipation | | B. Acute coronary syndrome and | d myocardial infarction | | C. Metabolic disorders, Impoten | cy, Diabetes mellitus, Hepatitis and Liver cirrhosis | | D. All of the above | | | 39. What types of drugs causing healt | h hazards do you know? | | A. Marijuana | C. Heroin | | B. Cocaine | D. All | | 40. What are the health hazards of us | ing drugs? | | A. Abnormal heart attacks and in | ncreased liver damage or failure | | B. Weight loss and lung disease, | stroke, confusion and brain damage | | C. Lung disease, seizures, stroke | , mental confusion and brain damage | | D All | | ## **Unit Six: Population and natural resources** #### **Unit learning outcomes** After the successful completion of this unit, the student will be able to: - Differentiate between exponential and logistic growth of populations. - Explain ways of regulating population growth in the community - Define the terms "natural resource" and "conservation." - Explain the impacts of human activities on the environment. - Appreciate indigenous conservation practices in Ethiopia. ## 6.1 Population ecology At the end of this section, the student will be able to: - Define population ecology - Define population, population size, population density - Explain population study mechanisms. - Define carrying capacity. - Differentiate between exponential and logistic growth of populations. - Calculate the population growth rate and interpret the resulting growth curves. - Compare and contrast models of population growth in the presence and absence of carrying capacity. - Explain ways of regulating population growth in the community. - Compare and contrast density-dependent growth regulation and density-independent growth regulation by giving examples - Evaluate the effects of population growth on living conditions BIOLOGY GRADE 11 231 FDRE-MOE ETHIOPIA #### **Self-questioning** Before starting this section, ask yourself this question: "What do I know about population ecology, size, density, dispersal, and growth, and what do I want to learn from this section?" The earth is home to diverse groups of organisms that are classified into different ecological organizations. Ecology is the study of the interaction between those diverse groups of organisms and the physical environment. The levels of ecological organization include individual, population, community, ecosystem, biosphere, and biome (refer grade, 9, unit 6). A population is a group of interacting individuals of the same species with common characteristics living and interbreeding within a given area. #### What is population ecology? The study of populations involves examining how individuals in a particular population interact with each other and how the population as a whole interacts with its environment. The branch of biology that deals with this concept is called **ecology.** Population
ecology is the study of the processes of interaction and changes that affect the distribution and abundance of populations in the environment. In studying population ecology, scientists use statistical measures (demographic parameters) to help them investigate how populations respond to changes in their environments. The next section deals with population size, density, dispersal, and population growth in brief. ## Activity 6.1 Studying population Be in a group, discuss and present population size, density, and dispersal. Use the description given below. #### 6.1.1 Population size, density and dispersal #### **Population size** Population size is the total number of individuals present in a particular habitat where it is designated by the capital letter "N". For instance, a population of rats might How can we study the population? consist of 1000 individual rats or many more. In studying populations, locating and counting each individual is very difficult. Scientists use sampling technique and count individuals in the sample area and infer the total population to estimate the larger population in that particular habitat. They use one or more samples from the population and use these samples to make inferences about the population as a whole. Different sampling methods can be used to determine the size and density of a population of organisms. For example, the quadrat for plant species (Figure 6.1) and mark**recapture** methods for animals commonly used. In studying the human population, a population census is conducted once every 10 years at least. ## Studying populations using the Quadrat method This method is used to study immobile organisms such as plants and small, slowmoving organisms. A quadrat is a square made from sticks and string or by using a wood, plastic, or metal square and placed on the ground to count organisms in each square. Figure 6.1 sampling using a quadrat After setting up quadrats, we count the number of individuals within the boundaries of each quadrat. Many quadrats are located randomly throughout the habitat at several locations, to make sure that the recorded numbers are representative for the overall habitat. Then, counted numbers from each quadrat can be used to estimate the population size and population density within the entire habitat using the following formula. **Example:** A student wanted to know how many plants there were in a 50 m² field and threw many quadrats to cover 10 m² and counted 50 plants. The student used the equation above to calculate the estimated number of plants in the whole field (50 m²). ## Field activity 6.2 Determining population Prepare a quadrate with 50cm by 50cm from locally available materials and study the population of plants in your school compound/in your locality. When do you stop locating the quadrate in the area? What would happen if the size of quadrants decrease or increase in terms of accuracy in identifying all individuals? **BIOLOGY GRADE 11** FDRE-MoE ETHIOPIA Given $A = 50 \text{ m}^2$; $a = 10 \text{ m}^2$; n = 50 plants Populations Estimation by Mark-recapture method This method is used to determine the population size of animals that move from one place to another. The procedure for this method is: - 1. Capture a sample of animals, mark them with tags, bands, paint, or other body markings, and release them back into the environment, allowing them to join with the rest of the population. - 2. Capture a sample of animals that includes both marked and unmarked individuals. - 3. Estimate how many individuals there are in the total population using the ratio of marked to unmarked individuals. Example- Let us assume that researchers captured 60 birds, marked and released them back into the forest. After some time, they came back and captured another 100 birds. Of the birds that were captured for the second time, they found that 20 were already marked and 80 were unmarked. Using this data, they can estimate population size as follows: Given: M = 60; n = 100; X = 20 Population size has an effect on the survival of the population. Over a long period, genetic variation is more easily sustained in large populations than in small populations. Moreover, a large population has an advantage over a small population in surviving due to adaption in natural selection and changes in the physical environment, diseases, predators, and competitors. ## **Studying the human population** The human population can be studied using a census. A census is a systematic collection of information from all units or individuals in the population, or a complete enumeration of the members of a given population. It involves the official counting of a population in the territory of a country and the collection of information on selected demographic and socioeconomic characteristics of the population in terms of age, sex, ethnic group, religion, marital status, household size and structure, occupation, economic activity status, etc. The traditional approach to a population census consists of the registration of all individuals and their details using paper questionnaires during a field operation that normally lasts a few days or weeks. Data obtained from the population census can be used to calculate measures of population size, density, age, sex, birth rate, death rate, fertility rate, life expectancy, population growth rate (r), etc. There are two methods of conducting a census. These are: - 1. **De Facto Method of Census:** in which the government fixes one date for conducting the census throughout the country, it is usually done on a full-moon night because it is presumed that all households are present at their residences during that time. - 2. De Jure Method of Census: the government fixes the enumeration period of two or three weeks. The enumerators collect information from households by visiting them frequently to fill in the required information. Persons residing temporarily at a place are not counted, whereas only persons residing permanently at a place are counted in it. What do you think are the advantages and disadvantages of each method of conducting a census? Do you remember population censuses in Ethiopia? How were they conducted? Which method did they use? How can we determine population density? #### **Population density** A more complete description of a population's size includes the population density. Population number density is the individuals within a specific area or volume, i.e., population size divided by the total land area. It is the measurement of the size of a population as a percentage of the total land area occupied by the people. For example, the number of people per 10 square kilometers is a population density. Similar to all properties of a population, density is a dynamic characteristic that changes over time as individuals are added to or removed from the population. For instance, birth and immigration can increase a population's density, whereas death and emigration can decrease it. Example | plant
species | | | | | | | lm² ea | Total no of individuals | quadrat | Density
(D) | | | | |------------------|---|---|-----|---|--|--------|--------|-------------------------|---------|----------------|-----|-------------------|---------------| | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | (S) | studied (Q) | | | А | 2 | | | 5 | | 7 | | 10 | | 3 | 27 | 10 m ² | 27/10=2.
7 | | X | 2 | 8 | T I | 4 | V-1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/ | | | | 3 | 2 | 20 | 10 m ² | 20/10=2.
0 | | Z | | 5 | | | 5 | 11/1/1 | 3 | 6 | 1 | 1 | 21 | 10 m ² | 21/10=2.
1 | ## Activity 6.3 Determining population density Use the data you have collected in inquiry activity 6.2 to calculate the population density. #### **Population dispersal** Species dispersal patterns refer to how the individuals in a population are distributed in space at a given time (Figure 6.2). There are three dispersal patterns of species. These are: - 1. **Uniform dispersion**: individuals of a population are spaced more or less evenly. - 2. **Random dispersion**: individuals are distributed randomly, without a predictable pattern. - 3. **Clumped dispersion** individuals are clustered in groups. The dispersal pattern of individuals in a population provides more information about how they interact with each other and with their environment than a simple density measurement. Figure 6.2 Types of species dispersal patterns #### **Population growth** How can we measure population growth? What is the difference between exponential and logistic growth? Population growth is the increase in the number of humans on Earth. The global human population as well as population of Ethiopia has been increasing rapidly, and has continued to struggle for energy, food, water, and medical care availability. There are two ways of describing population growth. These are logistic growth and exponential growth. ## 6.1.2 Exponential and logistic growth in populations # Inquiry activity 6.4 Comparing population growth models Be in a group, discuss and compare exponential and logistic growth models, and present your answer to the class. Use the description given below. population ecology studies the *changes* that happen to groups of organisms and how those changes affect their constant interactions with their environment. **Population growth rate** is the percentage rate of change within a specified number of individuals in a population. It is the average annual rate of change of population size during a specified period. It measures how fast the size of the population is changing. The population size changes overtime. Accordingly, Scientists use different methods and models to describe changes that occur in a population thereby predict future changes. The two models are: - Exponential growth model describes populations increase in numbers without any limits to their growth. - Logistic growth model describes populations' increases in number in the presence of
limits, and due to an increase in number. ## **Exponential growth model** Exponential growth model represents the growth of a population *without* environmental constraints in which the population size (N) increases exponentially (Figure 6.3). In other words, it shows the growth of a population in an ideal environment with unlimited resources to use. The population growth graph of this model shows a *J-shaped curve* (Figure 6.3). In determining population growth, it is important to consider the death and birth of the organism. Thus, growth rate is determined by subtracting the death rate (D) from the birth rate (B). The death rate refers to the number of organisms that die during an interval, whereas the birth rate refers to the number of organisms that are born during the same interval. Considering death and birth rate as single factor (r), growth rate can be expressed in a simple equation as: Where $dN/dT = growth\ rate\ of\ the\ population$ in a given instance, d = change, $N = population\ size$, t = time, and $r = the\ per\ capita$ (per individual) rate of increase, that is, how quickly the population grows per individual in the population (r = B - D). It is the intrinsic rate of natural increase. BIOLOGY GRADE 11 237 FDRE-MOE ETHIOPIA The value "r'' can be positive, negative, or zero, i.e., the population growth rate (dN/dt) is proportional to r. > 0: increase r = 0: no change \approx r < 0 : decrease When r is zero, it indicates that the population's size is unchanging. This condition is known as "zero population growth." The equation above is very general, which we can make it more specific to describe the two different kinds of growth models: **Exponential growth model** is used when the *per capita* rate of increase - (r) takes the same positive value regardless of the population size. - Logistic growth model is used when the *per capita* rate of increase (r) decreases as the population increases towards a maximum limit. For any positive, constant r, exponential growth is often represented by an r of r_{max} . r_{max} is the maximum per capita rate of increase for a particular species under ideal conditions, where it varies from species to species. Hence, a further refinement of the formula is given below: Figure.6.3 Exponential growth model ## Inquiry activity- 6.5 Investigating exponential population growth The following data shows the exponential population growth rate for ten generations with r = 1. Draw the graph. Calculate the exponential growth rate for each generations and draw the figure when r = 0.6 (you can use excel to draw). $dN/dt = \Delta N = r N_i N_f$ $= N_i + \Delta N$ | Generation | Ni (Population Size) | rNi | N _f | |------------|----------------------|-------|----------------| | 1 | 100 | 100 | 200 | | 2 | 200 | 200 | 400 | | 3 | 400 | 400 | 800 | | 4 | 800 | 800 | 1600 | | 5 | 1600 | 1600 | 3200 | | 6 | 3200 | 3200 | 6400 | | 7 | 6400 | 6400 | 12800 | | 8 | 12800 | 12800 | 25600 | | 9 | 25600 | 25600 | 51200 | | 10 | 51200 | 51200 | 102400 | #### **Logistic growth model** Population growth can be affected by the availability of resources. Exponential growth is difficult to sustain over a long period for any population because resources are limited in nature. Therefore, exponential growth cannot express this condition. Hence, there is a necessity for another type of growth model. Accordingly, to express the reality of limited resources, population ecologists developed another growth model called the **logistic growth** model (Figure 6.4). In the logistic growth model, the population growth levels off from exponential growth due to limited resources, resulting in S-shaped curve graph models of population growth instead of Jshaped curve growth rate. The maximum population size that the available resources in an environment can sustain/support is called **carrying capacity** (K). When the size of the population reaches its carrying capacity, population growth levels off. Hence, the equation for the logistic model is: **BIOLOGY GRADE 11** FDRE-MoE ETHIOPIA Where K represents carrying capacity. Figure.6.4 Logistic growth mode ## Inquiry activity 6.6 Investigating logistic population growth Dear learners: The following data shows a sample of the logistic population growth rate for ten generations with r=1 and K=250. Draw the graph. Calculate the logistic growth rate for each generations and draw the figure when r=0.6. 0.9, 1.4 and 2 and K=100, 150, 200 and 300 (you can use excel to draw). $dN/dt = \Delta N = r N_i(K-N/K)$, $N_f = N_i + \Delta N$ | Generation | Ni (Population Size) | rN | (K-N)/K | ΔΝ | Nf | |------------|----------------------|-----|---------|----|-----| | 1 | 100 | 100 | 0.6 | 60 | 160 | | 2 | 160 | 160 | 0.36 | 58 | 218 | | 3 | 218 | 218 | 0.13 | 28 | 246 | | 4 | 246 | 246 | 0.02 | 4 | 250 | | 5 | 250 | 250 | 0.00 | 0 | 250 | | 6 | 250 | 250 | 7.96 | 0 | 250 | | 7 | 250 | 250 | 6.37 | 0 | 250 | | 8 | 250 | 250 | 0 | 0 | 250 | | 9 | 250 | 250 | 0 | 0 | 250 | | 10 | 250 | 250 | 0 | 0 | 250 | 3. Visit Ethiopian Central Statistics Agency Offices/local statistical offices in your area, find population census data or use https://www.statsethiopia.gov.et/census website to get the data and calculate population growth rate- using the concept of exponential and logistic growth rate. #### 6.1.3 Demographic structure Population size and density describe a population at one particular point in time, whereas demography describes the dynamics of a population. Demographic parameters that scientists use include population size, crude death rate, population growth rate, population density, infant mortality rate, fertility rate, crude birth rate, migration, and life expectancy. - **Crude birth rate** is the number of live births per 1000 people in a year. - ★ Crude death rate is the yearly annual number of deaths per 1,000 people. - Infant mortality rates refer to the annual number of deaths of children aged less than a year old per 1000 of those born alive. - Life expectancy is a measure that interests many people. It refers to the number of years that a human being can live in relation to the current mortality rates. - Fertility rate is a measure of the number of children born. - Mortality rate is a measure of the number of people who die. - Migration means the movement of people from one area to another area Inquiry activity 6.7 Investigating factors affecting population growth Discuss in groups how crude birthrate, crude death rate, infant mortality rates, life expectancy, fertility rate, mortality rate, migration (immigration and emigration) affect population growth. - > Immigration- movement of people into an area to take up permanent residence - **Emigration** refers to the movement of people out of an area to another place of permanent residence. In demography, **age and sex** are the most commonly studied elements of population composition. It is the number of individuals in terms of sex and age in the population. The age-sex structure is an important factor that influences population growth. This is because younger people are more likely to reproduce, whereas older people have higher rates of dying. **The age and sex** data of individuals in a population are often compared over time using population pyramids. #### **Population pyramid** What is the use of the population pyramid and how can we draw it? Population pyramid is a graphical representation of the age and sex composition of a specific population (Figure 6.5). In other words, the population pyramid represents the age-sex structure of a population and states the complex social narrative of a population through its shape. Demographers use these simple graphs to evaluate the BIOLOGY GRADE 11 241 FDRE-MOE ETHIOPIA extent of development for a given population in a country and to make predictions about the types of services that population will need, such as schools, hospitals, homes, etc. A population pyramid is popularly known as an "age pyramid" or "age and sex pyramid." Figure 6.5 A typical population pyramid of age and sex composition (for Angola in 2005). ## Inquiry activity 6.8 Interpreting population pyramid In the population pyramid given above, the bars become narrower from younger to older ages. Explain why. What does a large base represent? What is the main difference in the demographic structure of developed and developing nations? What is the demographic transition? There are three types of population pyramids as shown in Figure 6.6. **Expansive population pyramids** are used to describe populations that are young and growing. The pyramid' shape has a broad base and a narrow top. Expansive population pyramids show the presence of a larger percentage of the population in the younger age group. Populations with this shape usually have high fertility rates with lower life expectancies. Many third world countries have expansive population pyramids. Constrictive population pyramids are used to describe populations that are elderly and shrinking. Constrictive pyramids have smaller percentages of people in the younger age group. Countries with higher levels of economic development have constrictive population pyramids because access to quality education and health care is available to a large portion of the population. **Stationary population pyramids** are used to describe populations that are not growing. They show an almost equal proportion of the population in each age group in that it tapers off at the top. There is not a decrease or increase in population; it is stable. Developed countries, where birth rates are low and overall quality of life is high, have a stationary population pyramid. Figure 6.6 Types of population pyramid (Kenya, United State, Italy, from left to right, 2015) Example: To compute percentages for the 5-year age groups and draw a population pyramid, we follow the following steps: - 1. Collect data on a country's population that
is already classified into males and females and into 5-year age categories, e.g. 0-4, 5-9, 10-14, 15-19, 20-24, etc. - 2. Take one category (i.e., males) and compute what percentage of each 5-year age group makes up the total population. For example, if the males aged 0-4 were 20,000 of the population of a country and the total population for the country is 2,000,000, then the percentage for males aged 0-4 will be computed as: $20,000/2,000,000 \times 100 = 1\%$. - 3. Repeat the process in step 2 above and calculate the percentages for all 5-year age group categories (5-9, 10-14, 15-19, 20-24, etc.) for both males and females in turn. - 4. Look for a graph sheet or paper then draw a central axis/line in the middle. Create a scale for the percentages of the population at the bottom of the axis (scale should not exceed 0–10 %). After this, plot percentages of the population for 5-year age groups for males on the left hand side of the middle line on the graph, and plot the percentages for females on the right hand side of the axis. - 5. Use different shades or colors (of your choice) to show the portion of the graph for males and females. #### **Population pyramids in Ethiopia** Do you think that the population pyramid of Ethiopia is similar to the above countries pyramids? Why? According to a report by the Ethiopian Public Health Association in 2014, the population of Ethiopia grew substantially in the years it was 42.6 million in 1984, 53.5 million in 1994, 73.5 million in 2007 and 83.7 million in 2012 and is currently estimated to be more than 110 million. Moreover, the 2007 national population census indicated that Ethiopia has a younger population, with 45 percent of its population under the age of 15 years and only 4.8 percent of its population aged 60 years or older. Women between the ages of 15 and 49 account for 23% of the total population. The Ethiopian population pyramid of 1984 and 2017 is given below (See Figure 6.7). Figure 6.7 Population pyramid of Ethiopia from 1984 to 2017 ### Inquiry activity 6.9 Examining and comparing population pyramid - 1 What is the difference between the population pyramids of 1984 and 2017? Interpret the graph (Figure 6.7). - 2 Conduct an investigation on population pyramid shape of Ethiopia in 2020, interpret and compare it with previous one. Why do they differ? Explain (refer this link https://www.populationpyramid.net/ethiopia/2017/) - search population census data of ethiopia (a developing country) and any other developed country and compare the population pyramid of both. See https://countryeconomy.com/demography/population-structure/ethiopia https://demographicdividend.org/ethiopia/ to get population pyramid of Ethiopia at different time since 1970 #### **Survivorship Curves** A survivorship curve is a graph of the number of individuals surviving at each age interval versus time. There are three types of survivorship curves. **Type I:** Organisms produce relatively few offspring and provide a lot of care to the offspring, increasing the likelihood of their survival. As a result, most of the offspring survive to adulthood, so they can reproduce. While mortality is low in the early and middle years, it occurs mostly in older individuals. This pattern is typical of humans and most mammals. **Type II**: Organisms produce moderate numbers of offspring and provide some of these organisms survive their younger years. parental care. The death /mortality rate is relatively constant throughout the entire life span, and mortality is equally likely to occur at any age in the life span. An example of this pattern of survivorship curve occurs in some birds. **Type III**: organisms produce many offspring but provide them with little or no care. As a result, relatively few offspring survive to adulthood. Mortality is highest at early ages, but it is lower at later ages. This pattern is a typical example of plants, invertebrates, and many species of fish because very few The following graph (Figure 6.8) is an example of a survivorship curve. BIOLOGY GRADE 11 245 FDRE-Moe ETHIOPIA Figure 6.8 Survivorship curves of population according to age. ### Inquiry activity 6.10 conduct a debate Be in two groups and conduct a debate on the advantages and disadvantages of population growth in humans and other organisms #### **6.1.4 Population regulation** As you have studied in the logistic growth model, population growth will always end up because of resistance to growth at the carrying capacity. There are two resistances to population growth. What are the different factors that regulate the population growth rate? How do they regulate growth? - Density-dependent factors refer to the density of the population at a given time that affects its growth rate. - **Density-independent factors** are factors that influence the growth rate of the population regardless of its population density. #### A. Density-dependent factors Density-dependent factors are living (biotic) factors that affect a population. They include predation, competition (interspecific and intraspecific), accumulation of waste, and diseases (Figure 6.5). Usually, the denser a population is, the greater its mortality rate will be. For example, during intraspecific and interspecific competition, the reproductive rates of individuals will usually be lower, reducing the growth rate of their population. In addition, low prey density increases the mortality of its predators because they have more difficulty ensuring their food source. The diseases in the area regulate population growth. For instance, unlike in a sparsely packed population, communicable diseases spread quickly and increase mortality in a dense population. ## Inquiry activity 6.11 Discussion Be in a group and investigate the density-dependent and density-independent factors that limit the population growth rate. give examples for both factors. #### **B.** Density-independent factors Density-independent factors are non-living (abiotic) factors that regulate the population growth rate *regardless* of population density. Other density-independent factors include weather, natural disasters, and pollution (Figure 6.9). An individual may be killed in a catastrophic earthquake regardless of the number of individuals present in that area. This indicates that the chances of survival of the organisms are the same whether the population density is high or low. Figure 6.9 Examples of population density limiting factors BIOLOGY GRADE 11 247 FDRE-MOE ETHIOPIA #### 6.2 Natural resources After the successful completion of this section, the student will be able to: - Define natural resources - Differentiate between renewable and non-renewable natural resources. - Mention examples of renewable and non-renewable natural resources. ## Self-questioning Before starting this section, ask yourself this question: "What do I know about natural resources and what do I want to learn from this section?" The earth is full of resources that are important for human beings to live on. Natural resources are the abundant resources available on the earth that are used to support life and meet people's needs. Nature provides us with the basic needs for our survival, such as food, shelter, clothes, etc. ## Inquiry activity 6.12 studying natural resources Be in a group and - 1. Identify natural resources - why some natural resources are renewable and some are non-renewable - 3. Mention some renewable and nonrenewable natural resources - 4. Identify exhaustible and noninexhaustible natural resources. Natural resources refer to any natural substances or materials that are available naturally in the environment and that are used by human beings. They include oil, coal, natural gas, metals, stone, air, sunlight, soil, water, animals, birds, fish, and plants. Natural resources are used to make food, fuel, our clothes, cars, televisions, computers, and refrigerators, which provide us with heat, light, and power. Natural resources can be classified in various ways as renewable and non-renewable, or inexhaustible and exhaustible, respectively (Figure 6.10). Figure 6.10 Categories of Natural Resources #### 6.2.1 Renewable Renewable natural resources are resources that can be replaced after utilization. Resources that cannot be exhausted even after continuous utilization are termed renewable resources. Examples of renewable resources include sunlight, air, trees, water, wind, tidal energy, solar and wind energy, biomass energy, and hydropower. They are available continuously and their quantity is not noticeably affected by human consumption. However, renewable resources do not have a rapid recovery rate and are susceptible to depletion if they are overused. They can also be depleted if not properly managed or conserved. #### 6.2.2 Non-renewable How can you classify natural resources into renewable and non-renewable? Non-renewable natural resources are those resources that are found in the environment but do not naturally replenish at the same speed at which they are used up to meet the growing demands. These resources may take millions of years to form and replenish. A resource is considered non-renewable when its rate of consumption exceeds its rate of recovery. Examples of non-renewable natural resources are minerals, fossil fuels, coal, and natural gas. BIOLOGY GRADE 11 249 FDRE-MOE ETHIOPIA ## 6.3 Conservation of natural resources in Ethiopia After the successful completion of this section, the student will be able to: - Define conservation. - Explain conservation mechanism of wildlife and plants. - Discuss the mechanisms of soil and water conservation. - Explain the need for conservation. ## Self-questioning Before starting this section, ask yourself this question: "What do I know about conservation of natural resources and what do I want to learn from this section?" Most of the natural resources are limited. In other words, these natural resources will eventually run out, and consequently, the amount resources to
provide people, need especially in areas where population size is increasing at a higher rate, will be limited. There is a need to use existing resources wisely so that they will be available for the next generation. Therefore, conservation of natural resources is crucial. What do you know about the conservation of natural resources? Reflect on what you know about conservation and what you want to know. ## **Inquiry activity 6.13 Studying** conservation mechanisms Be in a group, visit wild life conservation offices, the institute of biodiversity, agricultural offices, water resource management and come up with the conservation mechanisms practiced for wildlife, plants, soil, and water in Ethiopia. As we have discussed in the above section, natural resources are resources that exist in nature. These include soil, water, air, plants, animals, and energy. Some of them are found in a limited amount, which can be used only for a few years. Therefore, wise use and substitution of such natural resources is crucial to passing them on to the next generation. However, due to the growing population, rapid industrialization, and urbanization, the demand for natural resources is rapidly increasing and they are excessively being used. This leads to the depletion of natural resources. Conservation is the care, protection, and wise use of natural resources so that the resources can be used for future generations. It is also the preservation, management, or restoration of natural environments and the ecological communities habituated to human beings. Conservation aims to manage human use of natural resources for the current public benefit and sustainable social and economic utilization. What kinds of indigenous and scientific conservation mechanisms for natural resources are there in your locality? Ethiopia has a wide range of natural resources such as plants, animals, water, and soil. Its topography and diverse climatic conditions have contributed to the existence of such natural resources. However, natural resources are facing problems unless appropriate conservation mechanisms are designed and implemented to keep them and pass them on to the next generations. The next section deals with natural resources including, wildlife, plants, soil, and water. #### Wildlife in Ethiopia What is wildlife? What are the causes of wildlife loss? What are the conservation mechanisms in your locality? Why we conserve wildlife? has huge wildlife resource potential that has national and global importance. Wildlife refers to living things that live in the natural environment and are not yet domesticated. This section focuses on one of the categories of wildlife, animals. **Importance:** Wildlife resources have different benefits in that they are used to maintain natural ecological processes, store genetic material for the future, secure wildlife tourism, and contribute to the national economy, and manufacture goods. Examples of wildlife in Ethiopia are shown in the figure below (Figure 6.11). Figure 6.11 Examples of wild animals in Ethiopia. From left to right Lion: Stressemann's Bushcrow, Walia Ibex, and the Ethiopian Mountain Chameleon. Despite the fact that wild life has tremendous value for the country and society, the loss and decline of wildlife has been reported as a major problem. BIOLOGY GRADE 11 251 FDRE-MOE ETHIOPIA ## Activity 6.14 Exploring the causes of wild life decline What are the different natural and human activities that can be the causes of the decline of wildlife in Ethiopia? How do they affect wild life? Search for it on internet, discuss it in class, and present it to your classmates. Causes of loss and decline: Loss and decline of wildlife is caused by different natural and human activities in Ethiopia. Natural disasters such as earthquakes, floods, droughts, tornadoes and wild fire are the major causes of loss and decline of wild life. Human activities such as expansion of agricultural activities, development activities, deforestation, poaching, illegal wildlife trade, habitat change, climate change, overexploitation, and pollution have also contributed to the loss and decline of wildlife in Ethiopia. How? **Conservation mechanisms**: due to the gradual loss and decline of wild life, we found it very crucial to design and implement wildlife conservation mechanisms. Wildlife conservation is the practice of protecting wildlife and their habitats. Wildlife conservation in Ethiopia has been practiced based on wildlife conservation areas. For this purpose, Ethiopia has established 24 national parks, 2 wild sanctuaries, 6 wild life reserves, 5 community conservation areas and more than 10 controlled hunting areas, as shown in the table below (Table 6.1). The table shows the wildlife conservation areas, regional states in which they are located, year of establishment and area in hectares of each national park, wild sanctuary, wild life reserve, community conservation area and controlled hunting area. Table 6.1 Sample National Parks, Sanctuaries, and Wildlife Reserves in Ethiopia | | Area | State | Year | Hect. | |-----|---------------------|---------------|------|---------| | | National Parks | | | | | 1 | Abijata Shala Lakes | Oromia | 1963 | 88,700 | | 2 | Alatish | Amhara | 1997 | 266,600 | | 3 | Awash | Oromia & Afar | 1958 | 75,600 | | 4 | Bale Mountains | Oromia | 1962 | 247,100 | | 5 | Gambella | Gambella | 1966 | 506,100 | | 6 | Geralle | Somali | 1998 | 385,800 | | 7 | Kafta Shiraro7 | Tigray | 1999 | 250,000 | | 8 | Nechsar | SNNP | 1966 | 51,400 | | 9 | Omo | SNNP | 1959 | 406,800 | | 10 | Simien Mountains | Amhara | 1959 | 41,200 | | 111 | Yangudi Rassa | Afar | 1969 | 473,100 | | 12 | Denkoro Chaka | Amhara | 1999 | 38,117 | | 13 | Mago | SNNP | 1984 | 194,200 | | | Area | State | Year | Hect. | |---------------|------------------------------|--|---|---| | 14 | Yabello | Oromia | 1978 | 250,000 | | | Wildlife Sanctuaries | | | | | 1 | Babile ElephantSanctuary | Oromia & Somali | 1962 | 698,200 | | 2 | Senkele Swayne's Harte beest | Oromia & SNNP | 1964 | 5,400 | | | Sanctuary | 0000 | | 0.00 | | | Wildlife Reserves | | | | | 1 | Alledeghi | Afar | | 193,389 | | 2 | Awash west | Afar | | 415,000 | | 3 | Bale | Oromia | | 127,922 | | | Community Conservation Areas | | | | | 10 | Abune Yosef | Amhara | 0000 | | | 2 | Guassa Menz | Amhara | | -d///\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | | 3 | Tama | SNNP | | 166,500 | | $\overline{}$ | | KXXXXXIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII | 723111111111111111111111111111111111111 | | ## Inquiry activity 6.15 Studying wild life conservation areas Be in a group and visit a nearby wildlife conservation area (if possible) or search for information from a library or the internet and: - 1. Explain the difference between National Parks, Sanctuaries, Wildlife Reserves and Community Conservation - 2. Identify the dominant and endemic animals found there. - 3. Discuss the traditional and modern wildlife conservation mechanisms in Ethiopia and present them to the class. #### **Plants in Ethiopia** What are the causes of plant loss? What kinds of conservation mechanisms are there in your locality? Why do we need to conserve plants? plants in Ethiopia (figure 6.12). Similar to animals, the topography and diverse climatic conditions of Ethiopia have enabled various plant species to survive. Plant species in Ethiopia are diverse and have a rich endemic element. Therefore, Ethiopia is considered a centre for crop genetic diversity. The following figure shows examples of **BIOLOGY GRADE 11** FDRE-MoE ETHIOPIA Figure 6.12 Representative plants in Ethiopia. From left to right Mekmeko (Rumex abyssinicus) African juniper (Juniperus procera), Cabbage tree (Moringa stenopetala) and Kosso (Hagenia abyssinica). Similar to the threatening fate of animals, the loss and decline of plant species is a big problem in Ethiopia. Cause of loss and decline of plant species: Plant species are being lost and declined due to natural and manmade activities. The natural disasters mentioned so far for the loss and decline of wildlife can be the major causes of the loss and decline of plant species. Human activities such as deforestation, climate change, invasive species, overexploitation, pollution and land degradation are some of the problems endangering plant species in Ethiopia. How these activities endanger plant species in Ethiopia? **Conservation mechanisms:** conservation mechanisms for plant species in Ethiopia include **indigenous** and **modern practices**. **Indigenous practices:** Indigenous or cultural practices refer to the long-standing traditions and ways of life of specific communities or localities. Some of the traditional systems used for plant conservation rely on taboos or forbidden practices for using or consuming some plant species; domestication; reserves; selective harvesting; sacred groves, etc. Sacred places and places of worship, such as the compounds of churches and mosques, graveyards, and monasteries, have been important sites and are considered reserved areas that have contributed to the protection of indigenous plants. The traditional practices for preserving the genetic resources of indigenous vegetables are regarded as important conservation practices. The traditional farming systems and the traditional agroforestry systems practices have been able to maintain a rich genetic diversity of vegetables and other crops as the people who have used them have developed sophisticated mechanisms of selection, transfer, exchange, and conservation. #### **Inquiry activity 6.16 Investigating indigenous conservation practice** Identify indigenous knowledge used for the conservation of animals and plants in your area and discuss it in class. Visit any institutions related to plant and animal conservation and illustrate the difference between in situ and ex situ conservation of animals and
plants. Modern practices: practices used to establish botanical gardens, control invasive species, recover, restore, and preserve genes in a bank are some of the examples of modern practices. Preservation of seeds in the Ethiopian national gene bank is another conservation mechanism for plants. Soil and water in Ethiopia What kinds of indigenous and modern conservation mechanisms for soil and water resources are there in your locality? Ethiopia has large soil and water resources. The wide range of climate, topography, parent material, and land use in Ethiopia has resulted in the formation of various soil types in different parts of the country. Similarly, it has resulted in the distribution of different surface and groundwater resources in quantity and quality. The country's water resources provide the country with a large potential for hydropower generation, irrigation, and fishing. The best example is the Grand Ethiopian Renaissance Dam (GERD), which has been built on the Abay (Nile) River and can generate hydropower (Figure 6.13). Figure 6.13 Ethiopian Renaissance Dam (GERD) ## Inquiry Activity 6.17 Investigate facts about GERD Discuss the amount of electricity the Grand Ethiopian Renaissance Dam generates and the benefits to Ethiopia and neighboring countries. Water resource potential in Ethiopia includes lakes, river basins, and ground water. However, soil erosion and the decline in water quantity and quality have been the major problems that have **BIOLOGY GRADE 11** FDRE-MoE ETHIOPIA affected the agricultural production, the environment, and health of human beings and other animals in Ethiopia. Causes of soil erosion and the decline in water quantity and quality: the major causes of these problems are human activities such as deforestation, poor land husbandry practices, and wastes emitted from industries and homes. Hence, conservation of soil and water is mandatory. **Conservation mechanisms**: soil and water conservation measures involve both **mechanical** and **biological measures**. **Mechanical measures**: The major mechanical resource measures include constructing bunds, terraces, diversion ditches, check dams, micro-basins, and hillside terraces. Inquiry activity 6.18 Investigating indigenous conservation practice Identify indigenous knowledge of conservation of natural resources such as soil and water in your area and discuss it in class. Refer to environmental policies in Ethiopia and point out how conservation of natural resources has been addressed. **Biological measures**: The biological measures include enclosing degraded land from human and animal interferences; tree seedling production; planting of tree seedlings on farmlands (agroforestry); afforestation; and tree plantations around homesteads. The Green Legacy initiative that was launched in June of 2019 with the vision of building a green and climate resilient Ethiopia is a good example of efforts made by the Ethiopian people to reduce environmental problems such as soil erosion and loss of water. ## 6.4 Impact of traffic accident on wild and domestic animals After the successful completion of this section, the student will be able to: - Recognize traffic accident - Explain the effect and prevalence of traffic accident in Ethiopia and abroad. Before starting this section, ask yourself this question: "What do I know about the impact of traffic accidents in Ethiopia and what do I want to learn from this section?" Have you seen any traffic accidents in your area? How can you describe the damage? have become a huge global public health and development problem, killing and injuring many people and destroying properties every year. Developing countries, including Ethiopia, have accounted for a large number of global road traffic deaths. In addition to the loss of a human being, car accidents have also been the major cause of death for both wild and domestic animals (Figure 6.10). Even those animals that live in the conservation areas and outside are affected by car accidents while crossing highways near the reserved areas. Studies in the field of road ecology suggest that car accidents are the major cause of reductions in wildlife populations. This holds Studies show that road traffic accidents true in Ethiopia, where many animals are killed every year due to car accidents. For instance, a study conducted in 2017 by Addisu Asefa and his colleagues in Geralle National Park indicated that 29% of the wildlife mortality was due to car accidents. Imagine how this mortality would be high in other national parks and other wider areas where there are a number of crossing roads. Some of the methods to reduce traffic accidents on both wildlife and domestic animals include designing structures that allow safe passage for animals and wildlife, constructing underpasses to promote habitat connectivity and encourage natural movements, and considering natural wildlife habitats when roads are constructed and deriving slowly. The following figures show how car accidents have been seriously affecting the lives of animals in Ethiopia. BIOLOGY GRADE 11 257 FDRE-MOE ETHIOPIA Figure 6.14 Roakills of wild animals ## Inquiry activity 6.19 Investigating effects of traffic accident Visit transport and wildlife management offices in your area or invite a traffic police to your school to obtain data on car accidents and damages to human beings, wild and domestic animals, and properties. Then, they discuss the frequency and severity of car accidents and the mechanisms to minimize them. ### 6.5 Impact of human activities on the environment After the successful completion of this section, the student will be able to: - Define environment. - Explain the effects of human activity on the environment. - Define pollution. - Explain the causes and effects of water and air pollution. - Describe climate change, its causes, and its effects. - Describe Ozone depletion cause and its effects - Discuss acid rain, its causes, and its effects. - Explain global warming, its causes, and its effects. - Explain biodiversity loss, its causes, and its effects. - Describe toxic bioaccumulation, its causes, and its effects. - Discuss resource depletion, its causes, and its effects. ## Self-questioning Before starting this section, ask yourself the question: "What do I know about human activities that affect the environment and what do I want to learn from this section?" We, human beings, are an integral part of the environment where we depend on it for different aspects. We obtain all the materials needed for survival and development from the environment we live in. However, in an attempt to lead a standard life, we are the exploiting environment through destructive practices that have far-reaching side effects on the entire ecosystem and our lives. This has an effect on not only the present generation but also on the future generation. Human beings perform different activities to live in this word, from small activities at home to larger mechanized activities in the industrialized world. Though these activities have benefits for human beings in developing their economy and improving their living conditions, they have a negative impact on the environment, which in turn affects sustainable development and the health of human beings. What human activities are there in your that adversely affect the area environment? How they affect the environment? The following is a list of the major activities that affect the environment. - Burning of coal, natural gas - Using refrigerants and coolants **BIOLOGY GRADE 11 FDRE-MoE ETHIOPIA** - Applying pesticides - > Waste incineration and waste disposal - Using various volatile chemicals - Agricultural activities - Industrial and other sewage discharges - Construction of infrastructure and transportation - Mining activities Because of such human activities, the environment is now experiencing environmental pollution, climate change, global warming, acid rain, ozone layer depletion, loss of biodiversity, toxic bioaccumulation, and resource depletion that affect all living things in the environment. The following section deals with the effects of human activities in brief. #### 6.5.1 Environmental pollution What is pollution? What kinds of substances are released in your locality that pollute the environment? Environmental pollution is the contamination of the components of the environment that adversely affect the normal environmental processes. It is also the addition of any substances and forms of energy to the environment at a rate faster than they can be dispersed, diluted, decomposed, recycled, or stored in some harmless form. **Causes of environmental pollution:** Environmental pollution can be caused to some extent by natural events such as forest fires and active volcanoes, but mainly by human activities. Rapid human population growth and industrialization have aggravated pollution, which has become a universal problem. **Types of environmental pollution:** The major types of pollution are air pollution, water pollution, land pollution, noise pollution, and light pollution. Pollution of all kinds can have negative effects on the environment and wildlife that in turn have impacts on the health and wellbeing of human beings. #### **Air Pollution and its Effects** How air pollution affects living things? Air pollution is the contamination of the air in the atmosphere by harmful gases, dust, and smoke that affect plants, animals, and humans drastically. Causes of air pollution: Air pollution is caused by air pollutants being added into the environment at rates that exceed the natural capacity of the environment to dissipate and dilute or absorb them. The major air pollutants are carbon monoxide, nitrogen dioxide, ozone, lead, sulfur dioxide, smog and particles. These pollutants are released from human activities such as transportation, industrial activities, the burning of coal and natural gas, the use of refrigerants and the use of various volatile
chemicals. The following figure shows examples of air pollution causes (Figure 6.15). What do you think is the source effects on air? Figure 6.15 Causes of air pollution: industrial smoke (left), solid waste (right) **Effects of air pollution:** Air pollution is the leading environmental health risk and a major cause of environmental degradation in the world. It is the major cause of the depletion of the ozone layer and of many other harmful environmental effects. It causes respiratory and cardiovascular disorders in human beings, changes the pH levels of the soil, causes acidic rain and infects plants and other forms of vegetation, thereby making the food we eat harmful and toxic. #### **Water Pollution and its effect** How water pollution affect living things? Water is essential for living things. Water pollution is the contamination of water bodies. It interferes with the beneficial use of water. For instance, the presence of an excessive number of toxins in water bodies causes pollution of water. Causes of water pollution: The major causes of water pollution are usually human activities. Many pollutants into water are released from human activities such as factories, industrial agricultural wastes, sewage, transportation of oil, use of chemical fertilizers and insecticides, herbicides, pathogenic microorganisms, and *Water hyacinth* (Emboch) (Figure 6.16). **Effects of water pollution:** Water pollution is the major cause of the depletion of fish populations, the destruction of biodiversity, and waterborne diseases that lead to death. BIOLOGY GRADE 11 261 FDRE-MOE ETHIOPIA Fig.6.16. Causes of water pollution: solid wastes (left) and water hyacinth (right) ## Inquiry activity 6.20 Investigating air and water pollution Be in groups, discuss: - Traditional and modern mechanisms of reducing air and water pollution - What is eutrophication? What is the cause? Hint: Water hyacinth (Emboch) in Lakes and fertilizers. #### 6.5.2 Climate change What is climate change? Climate is the usual weather of a place that can vary for different seasons. Climate change is a change in the usual patterns of weather. This could be a change in the amount of rain, temperature, etc., for a month or season. Thus, climate change can affect living organisms in the environment. Cause of climate change: Global climate changes naturally over time scales due to the natural variations from internal fluctuations such as exchange of energy, water and carbon between the atmosphere, oceans, land and ice, and from external influences such as variations in the energy received from the sun and the effects of volcanic eruptions. Human activities can also change the climate by changing the natural components of the environment. Human activities, particularly the combustion of fossil fuels, are altering the climate system. It has increased the levels of carbon dioxide and other greenhouse gases in the atmosphere. Many of these greenhouse gases occur naturally, but human activities are increasing the concentrations of some of them in the atmosphere, in particular carbon dioxide (CO₂), methane, nitrous oxide, and fluorinated gases. **Effects:** Greenhouse gases have far-ranging environmental and health effects. They have a greenhouse effect that causes **global** warming. They act like the glass in a warming is an average rapid rise in the earth's temperature. The major causes of global warming are greenhouse gases released from human activities such as burning fossil fuels #### Inquiry activity 6.21 Investigating climate change and global warming Be in groups, search the internet or a library about the reducing/preventing mechanisms of climate change and global warming. Why is carbon dioxide is a more potent gas as compared to the other gases in terms of greenhouse effects? What is the difference between the greenhouse effect and the enhanced greenhouse effect? What are the causes of the drought in Ethiopia? Recall that famines occurred some years ago in Ethiopia. greenhouse, trapping the heat of the sun and preventing it from returning into space, resulting in global warming. These heat-trapping gases can be thought of as a blanket wrapped around the earth to prevent it from turning back. This results in an increase in the temperature of the earth's atmosphere, the ocean, and land surface. #### 6.5.3 Global warming As we have discussed in the previous section, How climate change cause global warming? climate change results in global warming. Global and industries. **Effects of global warming:** Global warming has an effect on living things. Some of the effects include flooding, melting of ice caps, rising oceans, loss of species, health problems. Some of the consequences of an increase in the earth's temperature include drought, rising sea levels, extinctions of species, heavy rainfall and flooding, high heat and health risk, poverty displacement. The following figure shows some of the effects of global warming such as forest burning, deforestation, draught and flooding and meting of ice (Figure 6.17). Figure 6.17 Effects of global arming #### 6.5.4 Ozone layer depletion One of the major problems caused by air pollution is the depletion of the ozone layer. Ozone (O₃) is What is the ozone layer? How can it be depleted? made of three oxygen atoms. While oxygen is important for the life of organisms, ozone is a toxic gas. However, ozone plays a critical function in the various ambient layers of the atmosphere. The atmosphere has four layers. These are the troposphere, stratosphere, mesosphere, and thermosphere. Ozone is found in the stratosphere of the atmosphere (Figure 6.20). The sun releases UV rays onto the earth, where the rays harm animals by causing skin cancer in humans. The ozone layer protects the earth from these harmful radiations (UV rays). It absorbs the radiation from the sun, thereby preventing it from entering the earth's atmosphere. However, this protective layer has been eroding due to the various factors resulting in ozone depletion (ozone hole). Cause of ozone depletion: The major cause of ozone layer depletion is the release of CFCs (chlorofluorocarbons), which are used in refrigerators and fire extinguishers, hydrofluorocarbons (HCFCs), and halons. CFCs cause chemical reactions that break down ozone molecules, reducing the ozone's ultraviolet radiation-absorbing capacity. Chlorine reacts with ozone and forms oxygen (O₂) and chlorine monoxide (CIO). $$Cl + O_3 \longrightarrow ClO + O_2$$ When the molecule of chlorine monoxide (CIO) meets with another molecule of oxygen(O), it breaks up, releasing chlorine (CI), which can react with another molecule of ozone (O_3) , creating the catalytic cycle of chlorine. $$ClO + O \longrightarrow Cl + O_2$$ Fig.6.18 Ozone depletion #### **Effects ozone layer depletion** - Ozone layer depletion exposes to UV rays that can lead to: - Skin cancer and cataracts and weaken the immune system response. - Ageing of the skin, making one look much older than he/she actually is. - Cause respiratory diseases such as chest pain, difficulty in breathing, or even throat irritation. - Ozone layer depletion also affects other living beings, such as terrestrial and aquatic animals and plants. - It also Increases the formation of ground-level ozone (smog) #### **Inquiry activity 6.22 Investigating Ozone layer depletion** Be in groups, search the internet or in a library about: - 1. Four atmospheric layer (Troposphere, Stratosphere, Mesosphere and Thermosphere) - 2. The reducing/preventing mechanisms of ozone layer depletion. Discuss and present in class. #### 6.5.5 Acid rain How the rain becomes acidic? Acid rain is rain with more acidic content (lower pH value) than natural rain. **Causes of Acid rain.** It is caused by high concentrations of acid-forming pollutants that dissolve in freshly condensed water vapor in the atmosphere. The major causes of acid rain are the burning of fossil fuels, electric power-generating facilities, industrial processes, exhausts emitted from the internal combustion engines that serve as sources of sulfur dioxide and nitrogen oxides, etc. The burning of fossil fuels (coal or oil) for energy contains sulfur and nitrogen, which combine with oxygen to form sulfur dioxide (SO2), and nitrogen dioxide, which contribute to the acidity of rain. Sulfur dioxide and nitrogen oxides enter into the atmosphere and react with water to form solutions of sulfuric acid (H_2SO_4), and nitric acid (HNO_3) respectively (figure 6.19). The reactions are shown as follows: $$2SO_2(g) + O_2(g) + 2H_2O(I) \rightarrow 2H_2SO_4(aq)$$ $4NO_2(g) + O_2(g) + 2H_2O(I) \rightarrow 4HNO_3(aq)$ Moreover, carbon dioxide (CO₂) in the atmosphere makes rain slightly acidic. This is because carbon dioxide and water combine to form carbonic acid, commonly known as carbonated water. Figure.6.19 formation of acid rain **Effects of acid rain:** Acid rain causes great damage to plants, soil, and water that in turn affects many living organisms that depend on these resources for their survival. Acid rain can harm plants by damaging the outer leaf surfaces by stripping away the waxy protective coating from the plant leaves, resulting in the leaching of nutrients such as calcium, magnesium, and potassium out of leaf tissue and drying (Figure 6.20). BIOLOGY GRADE 11 267 FDRE-MOE ETHIOPIA Acid rain can keep seeds from germinating and degrade the available nutrients in the soil so that plants do not use them. It dissolves aluminum in the soil, which stops the growth of plants. It also dissolves other minerals in the soil quickly, allowing nutrients to be released and leached away. Figure 6.20 effect of acid rain on forest Soil microorganisms, aquatic animals such as fish and amphibians can also be affected by acid rain. It also affects human beings by reducing the quality of the water people use for drinking and cleaning and can cause acute toxicity or chronic health problems due to dissolved trace metals. Corrosion of
water pipes, which further results in leaching of heavy metals such as iron, lead, and copper into drinking water, can also be caused by acid rain. It also damages the buildings and monuments made up of stones and metals. ### 6.5.6 Loss of Biodiversity What is biodiversity? Biodiversity refers to the variety of life on earth in terms of genes, species, individual organisms within a given species, and biological communities from an ecosystem to the global biosphere. The loss of biodiversity is a decrease in biodiversity with regard to the number genes, species, and biological communities in the world. 268 #### **Activity 6.23 Investigating acid rain** Be in groups, discuss and present the reducing/preventing mechanisms of acid rain based on the above explanations. Causes of loss of biodiversity: Over the last many years, the rapid growth of the human population has caused rapid ecosystem change and massive loss of biodiversity across the world (Figure 6.21). The loss of biodiversity is mainly related to the permanent ecological changes in the ecosystems, landscapes, and the global biosphere because of the exponential growth and demands of the human population. The major causes of the loss of biodiversity are: - fragmentation, destruction, and transformation of the existing natural habitat reduces or eliminates the food resources and living space for most species. This results in the loss of biodiversity, even in the elimination of those species that cannot migrate. - with capturing and harvesting of animals or other organisms beyond the capacity for surviving populations without leaving enough to replace their losses result in biodiversity loss. - pollution: Human activities influence the natural environment, resulting in pollution of the environment and this causes biodiversity loss thereby creating health problems for the exposed organisms, killing organisms or creating reproductive problems that threaten the species' survival. - surface affects biodiversity because it endangers all the species, especially those species that are adapted to the cold due to latitude or altitude. - Invasive species: The introduction of new species/non-native species to the country that significantly modify or disrupt the ecosystems they colonize may out compete native species for food and habitat, which triggers population declines in the native species. BIOLOGY GRADE 11 269 FDRE-MOE ETHIOPIA Figure.6.21 Deforestation, one of the cause of biodiversity loss **Effects of biodiversity loss:** The loss of biodiversity is increasingly threatening the earth's ability to provide humans with things such as food, water, fertile soils, and protection from pests and disease. Biodiversity is critical to maintaining the ecosystem. The decline of biodiversity lowers an ecosystem's productivity and lowers the quality of the ecosystem's services. Loss of biodiversity affects the economic systems and human society. Humans rely on various plants, animals, and other organisms for food, building materials, and medicines, and their availability as commodities is important to many cultures. The loss of biodiversity among these critical natural resources threatens the global food security and the development of new # Inquiry activity 6.24 Investigating loss of biodiversity Be in groups, search on the internet or in a library about the mechanisms that reduce or prevent biodiversity loss. pharmaceuticals to deal with future diseases. The mainstream and traditional medicines can be derived from the chemicals in rare plants and animals, and thus lost species represent will loss opportunities to treat and cure. #### 6.5.7 Toxic bioaccumulation Bioaccumulation is an increase in the concentration or accumulation of chemicals in living organisms' body tissues. Persistent bioaccumulative toxic substances (PBTs) are chemicals that do not degrade easily in the environment. PBTs are typically accumulated in fatty tissues and are slowly metabolized, often increasing in concentration within the food chain. How toxic substance accumulate in the body of organisms. What are their effects? **Sources of toxic bio-accumulates:** The major bio-accumulates are organic compounds and metals. They include synthetic chemicals that contain halogen atoms (particularly fluorine, chlorine, or bromine), DDT, and metals, such as lead and mercury. The process of bioaccumulation occurs as follows (Figure 6.22): - 1. Plants absorb small amounts of toxic substances, often pesticides or pollutants. - 2. These plants are eaten by primary consumers in low concentrations. - 3. The toxin cannot be excreted, so when the primary consumers are eaten by secondary consumers, the toxin is absorbed by secondary consumers. - 4. This repeats as secondary consumers are eaten by higher-level consumers. - 5. At each trophic level of the food chain, the toxins remain in the tissues of the animals, so the concentration of toxins becomes the most concentrated in the body tissues of the animals at the top of the food chain. **Effects of toxic bio-accumulates**: Unlike many chemicals in the environment, bio-accumulates are not degraded by sunlight, destroyed through reactions with other environmental substances, or metabolized by naturally occurring bacteria. They are also resistant to the metabolic reactions in people or wildlife. Humans, domestic animals, and wildlife are more likely to be exposed to these chemicals in the environment. Bio-accumulative chemicals can have a variety of toxic properties, resulting in a diverse array of adverse health effects such as mutagenic damage to DNA, cancer, neurological toxicity, reproductive toxicity, developmental toxicity, and immune system damage. Lead contamination of air, soil, or drinking water can ultimately result in significant exposures in fetuses, infants, and children, resulting in impaired brain development. When mercury is consumed by fish with plankton, it passes through the food chain and damages the nervous systems and the reproductive systems of mammals, including humans. BIOLOGY GRADE 11 271 FDRE-MOE ETHIOPIA For examples, DDT affects the population of birds of prey at the top of food chains, which are badly affected because it makes the shells of their eggs very thin, causing them to break easily when the birds try to incubate them. Figure.6.22 Effects of pesticide accumulation #### **Inquiry Activity 6.25 Investigating bioaccumulation** Be in groups, and search the internet or in a library about: - 1. Why bioaccumulation or biomagnification increase as one goes from producers to consumers? (Recall primary tropic level through tertiary tropic level from grade 10). - 2. The reducing/preventing mechanism of the effects of bioaccumulation #### 6.5.8 Resource depletion What is resource depletion? Resource depletion occurs when the consumption of natural resources becomes faster than they can recover and become scarce. Natural resources have been depleted primarily because of human activities (recall natural resources and human activities that affect the environment from the previous sections). Due to the increasing global population, natural resource depletion is also increasing. The **major causes** of the depletion of natural resources are: - 1. **Overpopulation.** The consistent increase in the overall global population has been a critical factor in accelerating the depletion of natural resources because of the need for resources and conditions necessary to sustain it. - 2. **Poor farming practices**. Poor irrigation practices, poor soil management practices, and the use of heavy machinery and farming equipment result in resource depletion. For instance, destroying the soil structure makes it unsuitable for plant growth. Moreover, excessive use of pesticides, fungicides, and herbicides kills important soil microorganisms that are essential in replenishing nutrients in the soil. - 3. **Overconsumption of natural resources**-industrial revolution saw large-scale mineral and oil exploration, and the practice has been gradually growing, leading to more and more natural oil and mineral depletion. Moreover, together with the advancements in technology, development, and research in the contemporary era; exploitation of minerals has become easier and humans are digging deeper to access different ores. The increased exploitation of different minerals has resulted in a production decline. - 4. Industrial and Technological Development: Industrialization and technological advancement have resulted in the release of toxins and chemical by-products that have affected natural resources and the demand for natural resources, and these have increased the rate of natural resource depletion. ### **Inquiry Activity 6.26 Exploring resource depletion** Be in groups, search the internet or in a library about the solutions to natural resource depletion, and present them to the class. ## 6.6 Indigenous conservation practices in Ethiopia After the successful completion of this section, the student will be able to: - Define indigenous knowledge - List indigenous knowledge used in conservation - Explain indigenous conservation practices by Konso people in Ethiopia ## Self-questioning Before starting this section, ask yourself this question: "What do I know about indigenous conservation practices in Ethiopia and what do I want to learn from this section?" **BIOLOGY GRADE 11** FDRE-MoE ETHIOPIA **Indigenous peoples** have strong social and cultural values, orderly social control and cohesive social systems rooted in their indigenous knowledge of the universe in general, and their locals in particular. Indigenous knowledge is a body of knowledge built over generations by a group of local people living in a particular environment. What are indigenous practices in conservation? Ethiopia has a known indigenous culture, tradition, religion, and knowledge. The people of Ethiopia have indigenous knowledge about natural phenomena, natural resources, and their environment. For
instance, they have indigenous knowledge of natural phenomena such as astronomy, the proper use of natural resources, including the conservation and the prediction of seasonal conditions such as rainy season, drought season, weather conditions, productivity of the season, etc. This indigenous knowledge was developed through the critical observation of the sun, moon, and stars; behavior of animals; winds; and the level of temperatures. The indigenous knowledge they have developed has helped them to have their own calendar, predict the weather conditions, treat different types of diseases, produce crops to sustain their lives, protect their environment and conserve natural resources. Peoples in Ethiopia have developed indigenous knowledge in a wide range of fields of conservation of natural resources, such as the conservation of soil, water, crop seeds (selection and preservation), forest, medicinal plants, animals, etc. For example, the well-known and internationally recognized indigenous soil and water conservation practice of the Konso People, southwestern Ethiopia (practiced for more than 400 years) and this practice, which was registered by the United Nations Educational, Scientific and Cultural Organization (UNESCO) as a world heritage, can be mentioned. The most commonly used soil and water indigenous conservation practices among the Konso people are making terraces, contour ploughing, crop rotation, mixed cropping, surface mulching, and agro forestry. **Making Terraces:** Terraces are structures or buildings built mainly in hilly areas to intercept runoff water to reduce soil erosion and for soil and water conservation (Figure 6.23). The Konso Cultural Landscape is characterized by extensive dry stone terraces. The terraces retain the soil from erosion, collect maximum water and discharge the excess, and create terrace saddles that are used for agriculture. Figure.6.23 Terracing practice in the Konso area to reduce soil erosion. **Contour Ploughing** - Contour ploughing is the act of farming on a hill to reduce runoff of water and prevent soil erosion (Figure 6.24). Figure. 6.24 Contour ploughing and its importance in agricultural productivity **Crop Rotation**: Crop rotation is planting different crops sequentially on the same plots of land to improve soil fertility and reduce the effects of pests and weeds (Figure 6.25). Farmers know this, which is similar to the scientific method used to improve soil fertility that can be achieved by alternating high residue-producing crops with low residue-producing crops. BIOLOGY GRADE 11 275 FDRE-MOE ETHIOPIA #### Figure 6.25 Crop rotation improves agricultural productivity Mixed Cropping: Mixed cropping is the growth of two or more species on the same field at the same time (Figure 6.26). The great majority of the cases are a mix of maize and groundnuts. This shows that most of the farmers have an awareness of the potential to maintain soil fertility and to be cost-effective by using their indigenous knowledge of mixed cropping. Figure 6.26 Intercropping **Surface Mulching:** Surface mulching is applying a layer of materials to the surface of the soil for conservation of soil moisture to improve the fertility of the soil and reduce weed growth (Figure 6.27). Most farmers use surface mulch on their fields by using crop residue and branches. Figure 6.27 Mulching conserves soil moisture **Agro-forestry**: the use of agro-forestry for soil conservation is the most widely practiced activity in different areas. It is very common to see different types of small and big trees inside and just outside the farm land of Konso (Figure 6.28). The best example is Moringa stenopetala (locally also called Moringa). Thus, it seems that in addition to the role of trees for indigenous soil conservation practices in agro-forestry form, they also have a strong attachment to the cultural practices of society. These indigenous conservation practices are also observed among peoples in different parts of Ethiopia... Figure 6.28 Home garden agroforestry, Moringa (Moringa stenopetala) Moreover, there are also areas protected from any intervention by the community for conservation purposes. For example, the Guassa community conservation area of Menz in Ethiopia's central highlands, which was practiced for over 400 years, be mentioned. The area was under communal governed а management system known as Qero. The Qero system requires the closure of the #### Inquiry Activity 6.27 Investigating indigenous conservation practices What are the indigenous conservation practices that are practiced in your area? Be in groups; ask the elders about the indigenous knowledge and practices they have in conserving natural resources such as plants, animals, crops, medicinal plants, forests, etc. in their environment in particular. Guassa area from any use by the community for about three to five years. The opening of the area for use depends on the growth and recovery of the grass, community requirements for resources, the success of the local crop harvest, and on the frequency of drought in the Guassa area. The community elects headmen who determine when to open the area, for how long local people can harvest thatch grass, graze their livestock, and close it again. Figure 6.29 Guassa community conservation area with endemic animals ## **Unit six summary** Population is group of individuals that live in an area. Ecology is the study of the interaction between living things and their environment. Hence, population ecology is the study of the interaction between populations and the environment and the changes that affect the distribution and abundance of populations in the environment. Population ecology studies populations in terms of population size, growth rate, density, age structure, birth rates, death rates, and dispersal. Population size is the total number of individuals present in a particular habitat, whereas population density is the number of individuals per specific area or volume. Since it is difficult to locate and count all individuals in a population, a sampling technique is used to determine whether individuals in the **BIOLOGY GRADE 11** FDRE-MoE ETHIOPIA sample are counted and used to infer the total population in an area. The quadrat and mark-recapture methods are commonly used in population studies. Individuals in an area show **dispersal patterns,** which refer to the distribution of individuals in space at a given time. They may have *uniform dispersion, random dispersion, or clumped dispersion.* The world's human population, including the population of Ethiopia, has been growing faster and faster from time to time. This has resulted in various adverse effects in the transformation of a considerable portion of natural ecosystems in order to accommodate and supply this population growth. The magnitude of its impact on the environment depends on the following factors: human population size, resource use, waste production, environmental degradation, and technological developments. Models are used to study population ecology to describe the changes that occur in a population, thereby predicting future changes. The exponential growth model describes populations increasing in numbers without any limits to their growth, and the logistic growth model describes populations increasing in number using limits due to an increase in number. The population growth graph of the exponential growth model shows a **J-shaped curve**, whereas the logistic growth model shows an S-shaped curve graph because of the carrying capacity by which population growth levels off. There are two causes, density-dependent factors (due to an increase in population density) and density-independent factors (regardless of population density). Demography is the study of population changes over time and focuses on population size, population density, fecundity (birth rates), fertility, mortality (death rates), marriage, migration, age, and sex. Demographers use population pyramids to represent the age-sex structure of a population and states the complex social narrative of a population through their shape. A population pyramid is a graphical representation of the age and sex composition of a specific population. Natural resources are substances or materials that exist naturally in the environment and are used for different purposes. They include oil, coal, natural gas, metals, stone, air, sunlight, soil, water, animals, birds, fish, and plants. These can be grouped as renewable (can be replaced after utilization) and nonrenewable natural resources (do not naturally replenish). As a result of an increase in the population, natural resources are depleting excessively. Hence, conservation is very important. Conservation is the preservation, management, protection, and wise use of natural resources. Ethiopians have indigenous and modern ways of conserving natural resources such as wild life, plants, soil, etc. The day-to-day activities of human beings have several negative impacts on the environment. One of the impacts is climate change due to the combustion of fossil fuels. This activity has increased the levels of greenhouse gases such as carbon dioxide, methane, and nitrous oxide atmosphere. Greenhouse gases trap the sun's heat and prevent it from returning into space, resulting in global warming which has caused an increase in the temperature of the earth's atmosphere, the ocean, and land surface. This has resulted in the rise of sea levels, extinctions of species and loss of habitat, heavy rainfall and flooding, high heat stress and health risk. The other effect of human activities is environmental pollution. Environmental pollution is the contamination of the components of the environment. This pollution has different impacts on the natural world. Some of the impacts that adversely affect human beings and other living things are global warming, acid rain, ozone depletion, loss of biodiversity, and bioaccumulation in the
environment. The local people are aware of the degradation and depletion of natural resources. They have accumulated their own indigenous knowledge to conserve natural resources. People in Ethiopia have developed indigenous knowledge in the conservation of natural resources such as soil, water, crop seeds (selection and preservation) forest, medicinal plants, animals, etc. The practice of the Konso people in Ethiopia can be taken as exemplary knowledge indigenous used the conservation of natural resources. BIOLOGY GRADE 11 279 FDRE-MOE ETHIOPIA ### Unit six review questions #### I. Multiple choice questions **Direction:** Choose the correct answer for each question. - 1. Which one of the following best describes population Ecology? - A. the dynamics of individuals - B. groups of individuals - C. how populations grows - D. how populations change over time and through space - Assume that using the mark-recapture technique a student captured 100 birds and mark them. One week later the student captured 100 individuals and find that 40 are marked. The population of bird is - A. Decreasing - C. 40 individuals - B. 250 individuals - D. 160 individuals - 3. The dispersion pattern of the individuals in the diagram on the right is - A. Random C. Uniform B. Clumped D. A and B C. Air pollution B. Territorial behavior D. predation - 5. Carbon dioxide is important in our atmosphere because it is required for photosynthesis and traps some heat, keeping the Earth warm. However, human produced carbon dioxide is a problem because it: - A. Increases carbon dioxide concentration in the oceans - B. Leads to higher global warming - C. Causes toxic bioaccumulation - D. Causes uncontrolled photosynthesis. - 6. Which one of the following natural resource is renewable? - A. Coal - C. Solar - B. Natural gas - D. Uranium - 7. Which will most likely result in a negative growth rate in the human population? - A. The death rate is higher than the birth rate. - B. The birth rate is higher than the death rate. - C. Improved economic conditions. D. Improvements in sanitation. 8. Which one of the following is the main purpose of planting different types of crops on the same land throughout the year? A. It prevents insects from destroying crops. **B.** It allows for more genetic variation in plants. C. It helps to preserve the quality of the soil. D. It serves to preserve quality of water 9. Which of the following is measure by child-woman ratio? A. Population growth C. Migration B. Fertility D. Mortality 10. Which of the following cannot be drawn from the population pyramid of a country? A. Total population size C. Age distribution of population **B.** Population growth rate D. Birth and death rate 11. A bird release many eggs each time they reproduce. The majority of these offspring are eaten before they hatch. However, birds can live for many years. This is an example of A. Type I survivorship curve C. Type III survivorship curve B. Type II survivorship curve D. All of the above 12. Chief air pollutant which is likely to deplete ozone layer is A. Sulfur dioxide C. Nitrogen oxides and Fluorocarbons B. Carbon dioxide D. Carbon monoxide 13. Most abundant water pollutant is A. Detergents C. Industrial wastes B. Pesticides D. Ammonia. 14. An environmental factor such as storms and extreme heat or cold that affects population are: A. density- dependent factor C. population density B. density-independent factor D. dispersion - 15. Which one of the following is not true about the logistic model of population growth? - A. The graph of the model is J shaped. - B. The model shows a restricted growth rate - C. The logistic model considers the environment's carrying capacity. - D. The graph of the model is S shaped BIOLOGY GRADE 11 281 FDRE-MOE ETHIOPIA - 16. What is likely to be true of a population with an age structure that is pyramid shaped? - A. It is expected to grow slowly in the future. - B. It is expected to decline in population size over time. - C. It has potential for rapid population growth in the future. - D. This age structure is characteristic of zero population growth. - 17. At what year is the census carried? - A. Every 5 years - C. Every 1 year - B. Every 7 years - D. Every 10 years - 18. 80 individuals are born per year in a population, and the mid-year population is 5000. What is the birth rate of that area? - A. 20 - C. 4 - B. 16 - D. 2 - 19. The 20 individuals are dying per year in a population, and the mid-year population is 7000. What is the death rate of that area? - A. 13 - C. 2.8 - B. 30 - D. 29 - 20. Which of the following is the most likely explanation for the differences in the population pyramids? - A. Region A has a higher dependency ratio than Region B. - B. Region B has a higher population density than Region A. - C. Region A has a higher childhood mortality rate than Region B. - D. Region B has a higher total fertility rate than Region A. | | pulation pyramids, it is reasonable to infer that, | | | | | | | |--|---|--|--|--|--|--|--| | | vernments in Region B will be devoting a greater | | | | | | | | proportion of state spending over the next decade to which of the following needs? | | | | | | | | | ucture | C. health care | | | | | | | | | D. highway development | | | | | | | | is said to be the r | most important cause or reason for the extinction | | | | | | | | | | | | | | | | | gmentation | C. Invasion of alien species | | | | | | | | ecie | D. Co-extinctions | | | | | | | | protect and cons | erve the animals that need urgent measures to | | | | | | | | orotograna como | | | | | | | | | | | | | | | | | | C. Ex-sit | u conservation | | | | | | | | D. No co | nservation | | | | | | | | effect of pollution | depend on? | | | | | | | | A. The concentration of pollutants and the organism | | | | | | | | | B. The concentration, duration of exposure to pollutants and the organism | | | | | | | | | C. The concentration of pollutants and duration of exposure | | | | | | | | | | | | | | | | | | horus, nitrates, a | nd detergents in water lead to an acceleration in | | | | | | | | | | | | | | | | | C. Increase | in the number of fishes | | | | | | | | D. Increase i | n the number of aquatic plants | | | | | | | | ntration of DDT in | n each trophic level? | | | | | | | | C. Increases | | | | | | | | | D. Becomes z | rero | | | | | | | | | s in Region A, go g over the next de ucture s said to be the r gmentation ecie C. Ex-sit D. No con effect of pollution pollutants and the uration of exposu pollutants and du norus, nitrates, a C. Increase D. Increase intration of DDT in | | | | | | | 27. Which gases are commonly known as greenhouse gases? C. Chlorine D. Oxygen A. Carbon dioxide Nitrogen В. #### II. Short answers Direction: Write a short answer for the following questions. 1. What is greenhouse effect? How it causes global warming. What is the effect on living things? - 2. What is the difference between logistic and exponential growth? What conditions support exponential population growth? - 3. One of the causes of biodiversity loss is invasive species. Mention invasive species in Ethiopia and describe how they cause loss of biodiversity. - 4. How does the age-sex structure of a population influence growth? - 5. Explain what can be learned about a population from its population pyramid - 6. The 100 individuals are born per year in a population, and the mid-year population is 5000. What is the birth rate? - 7. Describe the difference between population density and distribution. Why organisms aren't always distributed evenly throughout their habitat? The End Biology is cool and Colourful